Skip to main content
Log in

Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution

  • Original Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The (Ru0.3Ti0.34Sn0.3Sb0.06)O2–TiO2 nanotubes (TNTs) anode has been prepared via anodization, deposition, and annealing. X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, and linear scanning voltammetry were used to scrutinize the electrodes and the electrochemical activity. The results indicate that highly ordered TNTs with large specific surface area could be implanted with active metal oxides. The catalyst firmly binds with the TNTs and enhances the electrochemical stability of the electrode. It displays high over-potential for oxygen evolution reaction. Accordingly, the constructed (Ru0.3Ti0.34Sn0.3Sb0.06)O2–TNTs anode exhibits a greater potential difference (ΔE) between the evolutions of oxygen and chlorine than that exhibited by the traditional dimensionally stable anode, which is beneficial for improving the selectivity toward chlorine evolution reaction. This superior performance is explained in terms of the surface properties and geometric structure of coated catalyst, as well as the electrochemical selectivity ascribed by the addition of tin and antimony species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fauvarque J (1996) The chlorine industry. Pure Appl Chem 68:1713–1720

    Article  CAS  Google Scholar 

  2. Moussallem I, Jorissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38:1177–1194

    Article  CAS  Google Scholar 

  3. Over H (2013) Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: a comparative review. Electrochim Acta 93:314–333

    Article  CAS  Google Scholar 

  4. Beer HB (1965) Improvements in or relating to electrodes for electrolysis. British Patent

  5. Beer HB (1980) The invention and industrial-development of metal anodes. J Electrochem Soc 127:303C–307C

    Article  CAS  Google Scholar 

  6. Trasatti S (1987) Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim Acta 32:369–382

    Article  CAS  Google Scholar 

  7. Trasatti S (2000) Electrocatalysis: understanding the success of DSA. Electrochim Acta 45:2377–2385

    Article  CAS  Google Scholar 

  8. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  9. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys Chem Chem Phys 12:283–290

    Article  CAS  Google Scholar 

  10. Bommaraju TV, Chen CP, Birss VI (2001) Deactivation of thermally formed RuO2 + TiO2 coating during chlorine evolution: mechanisms and reactivation measures. Mod Chlor-Alkali Technol 8:57–81

    Article  CAS  Google Scholar 

  11. Takasu Y, Sugimoto W, Nishiki Y, Nakamatsu S (2010) Structural analyses of RuO2–TiO2/Ti and IrO2–RuO2–TiO2/Ti anodes used in industrial chlor-alkali membrane processes. J Appl Electrochem 40:1789–1795

    Article  CAS  Google Scholar 

  12. Chen R, Trieu V, Zeradjanin AR, Natter H, Teschner D, Kintrup J, Bulan A, Schuhmann W, Hempelmann R (2012) Microstructural impact of anodic coating on the electrochemical chlorine evolution reaction. Phys Chem Chem Phys 14:7392–7399

    Article  CAS  Google Scholar 

  13. Kota R, Stucki S (1986) Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid-media. Eletrochim Acta 31:1311–1316

    Article  Google Scholar 

  14. Profeti D, Lassali TAF, Olivi P (2006) Preparation of Ir0.3Sn(0.7−x)TixO2 electrodes by the polymeric precursor method: characterization and lifetime study. J Appl Electrochem 36:883–888

    Article  CAS  Google Scholar 

  15. Seifollahi M, Jafarzadeh K (2009) Stability and morphology of (Ti0.1Ru0.2Sn0.7)O2 coating on Ti in chlorakali medium. Corros Eng Sci Technol 44:362–368

    Article  CAS  Google Scholar 

  16. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  CAS  Google Scholar 

  17. Kuang DB, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116

    Article  CAS  Google Scholar 

  18. Kim JH, Zhu K, Yan YF, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  19. Ortiz GF, Hanzu L, Djenizian T, Lavela P, Tirado JL, Knauth P (2009) Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater 21:63–67

    Article  CAS  Google Scholar 

  20. Pan K, Tian M, Jiang ZH, Kjartanson B, Chen AC (2012) Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochim Acta 60:147–153

    Article  CAS  Google Scholar 

  21. Wang YQ, Wei ZD, Gao B, Qi XQ, Li L, Zhang Q, Xia MR (2011) The electrochemical oxidation of methanol on a Pt/TNTs/Ti electrode enhanced by illumination. J Power Sources 196:1132–1135

    Article  CAS  Google Scholar 

  22. Cao HZ, Lu DH, Lin JP, Ye Q, Wu JJ, Zheng GQ (2013) Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity toward chlorine evolution. Electrochim Acta 91:234–239

    Article  CAS  Google Scholar 

  23. Gaudet J, Tavares AC, Trasatti S, Guay D (2005) Physicochemical characterization of mixed RuO2–SnO2 solid solutions. Chem Mater 17:1570–1579

    Article  CAS  Google Scholar 

  24. Kong HS, Lu HY, Zhang WL, Lin HB, Huang WM (2012) Performance characterization of Ti substrate lead dioxide electrode with different solid solution interlayers. J Mater Sci 47:6709–6715

    Article  CAS  Google Scholar 

  25. Trasatti S (1994) The electrochemistry of novel materials. Frontiers of electrochemistry. VCH Publishers, Weinheim, pp 207–295

    Google Scholar 

  26. Macounova K, Makarova M, Jirkovsky J, Franc J, Krtil P (2008) Parallel oxygen and chlorine evolution on Ru1−xNixO2−y nanostructured electrodes. Electrochim Acta 53:6126–6134

    Article  CAS  Google Scholar 

  27. Forti JC, Olivi P, de Andrade AR (2001) Characterisation of DSA-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)SnxO2 prepared via a polymeric precursor. Electrochim Acta 47:913–920

    Article  CAS  Google Scholar 

  28. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interface Sci 97:279–317

    Article  CAS  Google Scholar 

  29. Yousefpour M, Shokuhy A (2012) Electrodeposition of TiO2–RuO2–IrO2 coating on titanium substrate. Superlattice Microstruct 51:842–853

    Article  CAS  Google Scholar 

  30. Chen SY, Zheng YH, Wang SW, Chen XM (2011) Ti/RuO2–Sb2O5–SnO2 electrodes for chlorine evolution from seawater. Chem Eng J 172:47–51

    Article  CAS  Google Scholar 

  31. Comninellis C, Vercesi GP (1991) Problems in DSA coating deposition by thermal decomposition. J Appl Electrochem 21:136–142

    Article  CAS  Google Scholar 

  32. Lassali TAF, Bulhoes OS, Abeid LMC, Boodts JFC (1997) Surface characterization of thermally prepared, Ti-supported, Ir-based electrocatalysts containing Ti and Sn. J Electrochem Soc 144:3348–3354

    Article  CAS  Google Scholar 

  33. Chang SY, Chen SF, Huang YC (2011) Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2–Pd nanoparticle heterostructures. J Phys Chem C 115:1600–1607

    Article  CAS  Google Scholar 

  34. Roginskaya YE, Bystrov VI, Shub DM (1977) X-ray-diffraction and micro X-ray spectral study of RuO2–TiO2–Cl system. Zh Neorg Khim 22:201–205

    CAS  Google Scholar 

  35. Jacob KT, Subramanian J (2008) Phase diagram for the system RuO2–TiO2 in air. J Phase Equilib Diffus 29:136–140

    Article  CAS  Google Scholar 

  36. Doubova LM, Daolio S, DeBattisti A (2002) Examination of RuO2 single-crystal surface: charge storage mechanism in H2SO4 aqueous solution. J Electroanal Chem 532:25–33

    Article  CAS  Google Scholar 

  37. Lee KS, Park IS, Cho YH, Jung DS, Jung N, Park HY, Sung YE (2008) Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J Catal 258:143–152

    Article  CAS  Google Scholar 

  38. Kotz R, Stucki S, Carcer B (1991) Electrochemical waste water treatment using high overvoltage anodes. Part I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20

    Article  Google Scholar 

  39. Chen AC, Nigro S (2003) Influence of a nanoscale gold thin layer on Ti/SnO2–Sb2O5 electrodes. J Phys Chem B 107:13341–13348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially sponsored by the National Basic Research Program of China (Grant Nos.: 2012CB720303 and 2012CB215501) and the National Natural Science Foundation of China (Grant Nos.: 51072239, 21176327, and 20936008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, K., Deng, Z., Li, L. et al. Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J Appl Electrochem 43, 847–854 (2013). https://doi.org/10.1007/s10800-013-0570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0570-1

Keywords

Navigation