Skip to main content
Log in

Stability of Pt–Co/C and Pt–Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The stability of Pt–Co/C and Pt–Pd/C electrocatalysts relative to that of a commercial Pt/C catalyst was measured in terms of the loss of the electrochemical surface area (ESA). The electrocatalytic activity was investigated in an acidic solution (0.3 M H2SO4) and in a single PEM fuel cell under H2/O2 conditions. In the acidic solution, the ESA of the catalyst decreased as the number of repeated potential cycles increased, which is likely to be due to dissolution of the different metals contained within the catalyst structure. In the fuel cell environment, the deterioration of the cell performance increased as the number of repeated potential cycles increased. Thus, the loss of cell performance may be related to the loss of the ESA. In addition, the loss of the catalyst’s ESA affected the cell performance at low-, medium-, and high- current densities, indicating a loss of either the activation potential or an ohmic loss. Among the three electrocatalysts evaluated, the Pt–Co/C based one exhibited the highest electrocatalytic activity in both the acidic solution and in the fuel cell environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shinichi H, Jumbom K, Supramaniam S (1997) Electrochim Acta 4(10):1587

    Google Scholar 

  2. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsh H (2001) J Electroanal Chem 517(1–2):85

    CAS  Google Scholar 

  3. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Source 173(2):891

    Google Scholar 

  4. Bar-On I, Kirchain R, Roth R (2002) J Power Source 109:71

    Article  CAS  Google Scholar 

  5. A.D. Little, Inc. (ADL), (2011) Cost analysis of fuel cell system for transportation: baseline system cost estimate, prepared by E.J. Carlson and S. Mariano. http://www.ott.doe.gov/pdfs/baseline_cost_model.pdf. Accessed 11 Aug 2011

  6. Lomax FD Jr, James BD, Baum GN, Thomas CE (1997) Detailed manufacturing cost estimates for polymer electrolyte membrane (PEM) fuel cell for light duty vehicles. Directed Technologies Inc, Arlington

    Google Scholar 

  7. Vante NA, Tributsch H (1986) Nature 323:431

    Article  CAS  Google Scholar 

  8. Fernández JL, Raghuveer V, Manthiram A, Bard AJ (2005) J Am Chem Soc 127:13100

    Article  Google Scholar 

  9. Bagotsky VS (2009) Fuel cells, problems and solution, Chap 2. Wiley, New York

    Google Scholar 

  10. Bashyam R, Zelenay P (2006) Nature 443:63

    Article  CAS  Google Scholar 

  11. Zelenay P (2009) Advanced cathode catalysts, Hydrogen program annual merit review and peer evaluation meeting. Arlington, Virginia, May 18–22

  12. Ma Y, Zhang H, Zhong H, Xu T, Jin H, Tang Y, Xu Z (2010) Electrochim Acta 55(27):7945

    Article  CAS  Google Scholar 

  13. Kim SH, Pitsch H (2009) J Electrochem Soc 156(6):B673

    Article  CAS  Google Scholar 

  14. Mukherjee PP, Wang CY (2007) J Electrochem Soc 154(11):B1121

    Article  CAS  Google Scholar 

  15. Wang G, Mukherjee PP, Wang CY (2006) Electrochim Acta 51(15):3139

    Article  CAS  Google Scholar 

  16. Wang G, Mukherjee PP, Wang CY (2006) Electrochim Acta 51(15):3151

    Article  CAS  Google Scholar 

  17. Yoon YG, Yang TH, Park GG, Lee WY, Kim CS (2003) J Power Source 118(1–2):189

    Article  CAS  Google Scholar 

  18. Song D, Wang Q, Zhongsheng LZ, Navessin T, Holdcroft S (2004) Electrochim Acta 50(2–3):731

    Article  CAS  Google Scholar 

  19. Wang Y, Feng X (2009) J Electrochem Soc 156(3):B403

    Article  CAS  Google Scholar 

  20. He T, Kreidler E, Xiong L, Luo J, Zhong CJ (2006) J Electrochem Soc 153:A1637

    Article  CAS  Google Scholar 

  21. Luo J, Kariuki N, Han L, Wang L, Zhong CJ, He T (2006) Electrochim Acta 51(23):4821

    Article  CAS  Google Scholar 

  22. Han KH, Moon YS, Han OH, Hwang KJ, Kim I, Kim H (2007) Electrochem Commun 9(2):317

    Article  CAS  Google Scholar 

  23. Colón-Mercado HR, Popov PN (2006) J Power Source 155(2):253

    Article  Google Scholar 

  24. Zignani SC, Antolini E, Gonzalez ER (2008) J Power Source 182(1):83

    Article  CAS  Google Scholar 

  25. Wu H, Wexler D, Wang G (2009) J Alloy Comp 488:195

    Article  CAS  Google Scholar 

  26. Cho YH, Jeon TY, Lim JW, Cho YH, Ahnb M, Jung N, Yoo SJ, Yoon WS, Sung YE (2011) Int J Hydrogen Energy 36:4394

    Article  CAS  Google Scholar 

  27. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Int J Hydrogen Energy 30(11):1213

    Article  CAS  Google Scholar 

  28. Min M, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211

    Article  CAS  Google Scholar 

  29. Yang H, Vogel W, Lamy C, Alonso-Vante NC (2004) J Phys Chem B 108:11024

    Article  CAS  Google Scholar 

  30. Xiong L, Manthiram A (2005) J Electrochem Soc 152:A697

    Article  CAS  Google Scholar 

  31. Trongchuankij W, Poochinda K, Pruksathorn K, Hunsom M (2010) Renew Energy 35:2839

    Article  CAS  Google Scholar 

  32. Thanasilp S, Hunsom M (2011) Electrochim Acta 56(3):1164

    Article  CAS  Google Scholar 

  33. Thanasilp S, Hunsom M (2010) Fuel 89(12):3847

    Article  CAS  Google Scholar 

  34. Lopes T, Antolini E, Gonzalez ER (2008) Int J Hydrogen Energy 33:5563

    Article  CAS  Google Scholar 

  35. Xu JB, Zhao TS, Yang WW, Shen SY (2010) Int J Hydrogen Energy 35:8699

    Article  CAS  Google Scholar 

  36. Vassos BH, Ewing GW (1983) Electroanalytical chemistry. Wiley, USA

    Google Scholar 

  37. Van Der Klink JJ (1999) Adv Catal 44:1

    Article  Google Scholar 

  38. Lv H, Mu S, Cheng N, Pan M (2010) Appl Catal B 100:190

    Article  CAS  Google Scholar 

  39. Huang SY, Ganesan P, Popov BN (2011) Appl Catal B 102:71

    Article  CAS  Google Scholar 

  40. Colón-Mercado HR, Kim H, Popov BN (2004) Electrochem Com 6(8):795

    Article  Google Scholar 

  41. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47:3787

    Article  CAS  Google Scholar 

  42. Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z (2010) Appl Catal B 93:233

    Article  CAS  Google Scholar 

  43. Gojkovic SL, Zecevic SK, Savinell RF (1998) J Electrochem Soc 145:3712

    Google Scholar 

  44. Ralph TR, Hogarth MP (2002) Platin Met Rev 46:3

    CAS  Google Scholar 

  45. Yu P, Pemberton M, Plasse P (2005) J Power Source 144:11

    Article  CAS  Google Scholar 

  46. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  47. Cho YH, Choi B, Cho YH, Park HS, Sung YE (2007) Electrochem Commun 9(3):378

    Article  CAS  Google Scholar 

  48. Prentice G (1991) Electrochemical engineering principles. Prentice Hall Inc., New Jersey

    Google Scholar 

  49. Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2007) Electrochim Acta 52(12):3910

    Article  CAS  Google Scholar 

  50. Huang SY, Ganesan P, Popov BN (2010) Appl Catal B 96:224

    Article  CAS  Google Scholar 

  51. Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) J Electrochem Soc 135:2209

    Article  CAS  Google Scholar 

  52. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Faculty of Science, Chulalongkorn University, for financial support. The Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN276B) plus the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture are thanked for facility support. Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University, and Dr. Robert D.J. Butcher for comments, suggestions and checking the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mali Hunsom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Termpornvithit, C., Chewasatn, N. & Hunsom, M. Stability of Pt–Co/C and Pt–Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells. J Appl Electrochem 42, 169–178 (2012). https://doi.org/10.1007/s10800-012-0384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0384-6

Keywords

Navigation