Skip to main content
Log in

Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The spherical LiFePO4/C and LiFe0.9Mg0.1PO4/C powders were successfully prepared from spherical FePO4 via a simple uniform-phase precipitation method at normal pressure, using FeCl3 and H3PO4 as the reactants. The FePO4, LiFePO4/C, and LiFe0.9Mg0.1PO4/C powders were characterized by scanning electron microscopies (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), and tap-density testing. The uniform spherical particles produced are amorphous, but they were crystallized to FePO4 after calcining above 400 °C. Due to the homogeneity of the basic FePO4, the final products, LiFePO4/C and LiFe0.9Mg0.1PO4/C, are also significantly uniform and the particle size is of about 1 μm in diameter. The tap-density of the spherical LiFePO4/C and LiFe0.9Mg0.1PO4/C are 1.75 and 1.77 g cm−3, respectively, which are remarkably higher than the non-spherical LiFePO4 powders (the tap-density is 1.0–1.3 g cm−3). The excellent specific capacities of 148 and 157 mAh g−1 with a rate of 0.1 C are achieved for the LiFePO4/C and LiFe0.9Mg0.1PO4/C, respectively. Comparison of the cyclic voltammograms of LiFePO4/C and LiFe0.9Mg0.1PO4/C shows enhanced redox current and reversibility for the sample substituting Mg on the Fe site. LiFe0.9Mg0.1PO4/C exhibits better high-rate and cycle performances than the un-substituted LiFePO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

  3. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97/98:503

    Article  Google Scholar 

  4. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4:A170

    Article  CAS  Google Scholar 

  5. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184

    Article  CAS  Google Scholar 

  6. Hu Y, Doeff MM, Kostecki R, Fiñones R (2004) J Electrochem Soc 151:A1279

    Article  CAS  Google Scholar 

  7. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983

    Article  CAS  Google Scholar 

  8. Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  9. Yamada A, Yonemura M, Takei Y, Sonoyama N, Kanno R (2005) Electrochem Solid-State Lett 8:A55

    Article  CAS  Google Scholar 

  10. Sun YK, Bae YC, Myung ST (2005) J Appl Electrochem 35:151

    Article  CAS  Google Scholar 

  11. Ying J, Jiang C, Wan C (2004) J Power Sources 129:264

    Article  CAS  Google Scholar 

  12. Ying J, Lei M, Jiang C, Wan C, He X, Li J, Wang L, Ren J (2006) J Power Sources 158:543

    Article  CAS  Google Scholar 

  13. He P, Wang H, Qi L, Osaka T (2006) J Power Sources 158:529

    Article  CAS  Google Scholar 

  14. Shi SQ, Liu LJ, Ouyang CY, Wang DS, Wang Z, Chen L, Huang X (2003) Phys Rev B 68:195108

    Article  Google Scholar 

  15. Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ (2006) Electrochem Commun 8:1553

    Article  CAS  Google Scholar 

  16. Zhang M, Jiao LF, Yuan HT, Wang YM, Guo J, Zhao M, Wang W, Zhou XD (2006) Solid State Ionics 177:3309

    Article  CAS  Google Scholar 

  17. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6:A53

    Article  CAS  Google Scholar 

  18. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid-State Lett 7:A503

    Article  CAS  Google Scholar 

  19. Wang D, Li H, Shi S, Huang X, Chen L (2005) Electrochim Acta 50:2955

    Article  CAS  Google Scholar 

  20. Hong J, Wang C, Kasavajjula U (2006) J Power Sources 162:1289

    Article  CAS  Google Scholar 

  21. Wang C, Hong J (2007) Electrochem Solid-State Lett 10:A65

    Article  CAS  Google Scholar 

  22. Wilhelmy RB, Matijević E (1987) Colloids Surf 22:111

    Article  CAS  Google Scholar 

  23. Springsteen LL, Matijević E (1989) Colloid Polym Sci 267:1007

    Article  CAS  Google Scholar 

  24. Kandori K, Nakashima H, Ishikawa T (1993) J Colloid Interface Sci 160:499

    Article  CAS  Google Scholar 

  25. Kandori K, Kuwae T, Ishikawa T (2006) J Colloid Interface Sci 300:225

    Article  CAS  Google Scholar 

  26. Scaccia S, Carewska M, Wisniewski P, Prosini PP (2003) Mater Res Bull 38:1155

    Article  CAS  Google Scholar 

  27. Wang YQ, Wang JL, Yang J, Nuli JN (2006) Adv Funct Mater 16:2135

    Article  CAS  Google Scholar 

  28. Franger S, Cras FL, Bourbon C, Rouault H (2002) Electrochem Solid-State Lett 5:A231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhang, X. & Hong, L. Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries. J Appl Electrochem 39, 2433–2438 (2009). https://doi.org/10.1007/s10800-009-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9931-1

Keywords

Navigation