Skip to main content
Log in

Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Spinel type Co3O4 thin films, for the oxygen evolution reaction (OER) in 1 M KOH, have been prepared, on stainless steel supports, using the thermal decomposition method at 400 °C. The electrochemical behaviour of the oxide film/1 M KOH interface was investigated by cyclic voltammetry and impedance techniques. The impedance measurements were carried out at different positive potentials, from the open circuit potential to a potential in the OER region and the electrical equivalent circuit, L (R1Q1) (R2Q2) (R3Q3) was used to fit the experimental results. At each potential, a good correlation between experimental and simulated data is found, thereby validating the proposed equivalent circuit model. The roughness factor value determined in the potential region where the charge transfer reaction is negligible is similar to that obtained by cyclic voltammetry, with a value of 70 ± 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Trasatti S, Lodi G (1980) In: Trasatti S (ed) Electrodes of conductive metallic oxides, Part B. Elsevier, Amsterdam, p 521 and references therein

  2. Tarasevich MR, Efremov (1980) In: Trasatti S (ed) Electrodes of conductive metallic oxides, Part B. Elsevier, Amsterdam, p 221 and references therein

  3. Trasatti S (1994) In: Lipkowski J, Ross PN (eds) Electrochemistry of novel materials. VCH publishers Inc., New York, p 207 and references therein

  4. Hamdani M, Pereira MIS, Douch J, Ait Addi A, Berghoute Y, Mendonça M. H (2004) Electrochim Acta 49:1555

    CAS  Google Scholar 

  5. Singh RN, Hamdani M, Koenig JF, Chartier P (1990) J Appl Electrochem 20:442

    Article  CAS  Google Scholar 

  6. Singh RN, Koenig JF, Poillerat G, Chartier P (1990) J Electrochem Soc 137:1408

    Article  CAS  Google Scholar 

  7. Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:400

    Article  CAS  Google Scholar 

  8. Castro EB, Real SG, Pinheiro Dick LF (2004) Int J Hydrogen Energy 29:255

    Article  CAS  Google Scholar 

  9. Alves VA, Da Silva LA, Boodts JFC (1998) Electrochim Acta 44:1525

    Article  CAS  Google Scholar 

  10. Shieh DT, Hwang BJ (1993) Electrochim Acta 38:2239

    Article  CAS  Google Scholar 

  11. Silva GC, Fugivara CS, Tremiliosi Filho G, Sumodjo PTA, Benedetti AV (2002) Electrochim Acta 47:1883

    Article  Google Scholar 

  12. Singh RN, Mishra D, Anindita, Sinha ASK, Singh A (2007) Electrochem Commun 9:1369

    Article  CAS  Google Scholar 

  13. Wu G, Li N, Zhou D-R, Kurachi M, Xu B-Q (2004) J Solid State Chem 177:3682

    Article  CAS  Google Scholar 

  14. Hu JM, Meng HM, Zhang JQ, Cao CN (2002) Corr Sci 44:1655

    Article  CAS  Google Scholar 

  15. Da Silva LA, Alves VA, Da Silva MAP, Trasatti S, Boodts JFC (1997) Electrochim Acta 42:271

    Article  CAS  Google Scholar 

  16. Da Silva LM, De Faria LA, Bootd JFC (2002) J Electroanal Chem 532:141

    Article  CAS  Google Scholar 

  17. Priyantha N, Jayaweera P, Macdonalt DD, Sun A (2004) J Electroanal Chem 572:409

    Article  CAS  Google Scholar 

  18. Clerc C, Alkire RC (1989) In: Smyrl WH, Macdonald DD (eds) Proceedings of the symposium on transient techniques in: corrosion science and engineering, Proceedings, vol 89–1, p 57

  19. Lassali TAF, Boodts JFC, Bulhoes LOS (1999) Electrochim Acta 44:4203

    Article  CAS  Google Scholar 

  20. Lasia A (2002) In: Conway BE, White RE (eds) Modern aspect of Electrochemistry, vol 35. Kluwer Academic/Plenum Publishers, New York, p 1

    Chapter  Google Scholar 

  21. Laouni E, Hamdani M, Pereira MIS, Douch J, Mendonça MH, Berghoute Y, Singh RN, Int J Energy (submited)

  22. Bockris JO’M, Reddy AKN, Gamboa-Aldeco M (2000) In: Modern Electrochemistry, vol 2A, 2nd edn. Kluwer Academic/Plenum Publishers, New York, p 1132

    Google Scholar 

  23. Singh RN, Malviya M, Anindita, Sinha ASK, Chartier P (2007) Electrochim Acta 52:4264

    Article  CAS  Google Scholar 

  24. Singh NK, Tiwari SK, Anitha KL, Singh RN (1996) J Chem Soc Faraday Trans 92:2397

    Article  CAS  Google Scholar 

  25. Singh RN, Singh NK, Singh JP, Balaji G, Gajbhiye NS (2006) Int J Hydrogen Energy 31:701

    Article  CAS  Google Scholar 

  26. Singh RN, Malviya M, Chartier P (2007) J New Mat Electrochem Syst 10:181

    CAS  Google Scholar 

  27. Penner RM, Martin CR (1989) J Phys Chem 93:984

    Article  CAS  Google Scholar 

  28. Naoi K, Ueyama K, Osaka T, Smyrl WH (1990) J Electrochem Soc 137:494

    Article  CAS  Google Scholar 

  29. Bockris JO’M, Otagawa T (1984) J Electrochem Soc 131(2):290

    Article  CAS  Google Scholar 

  30. Bockris JO’M, Otagawa T (1983) J Phys Chem 87:2960

    Article  CAS  Google Scholar 

  31. Levine S, Smith AL (1971) Discuss Faraday Soc 52:290

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by CNRST (Maroc) and GRICES (Portugal) under a Research Convention project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamdani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laouini, E., Hamdani, M., Pereira, M.I.S. et al. Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium. J Appl Electrochem 38, 1485–1494 (2008). https://doi.org/10.1007/s10800-008-9593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9593-4

Keywords

Navigation