Skip to main content
Log in

Amperometric/potentiometric hydrocarbon sensors: real world solutions for use in ultra high vacuum

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Carbonaceous deposits produced on Ru-capped multilayer mirrors under extreme ultra violet irradiation in the presence of adventitious gaseous hydrocarbons are a major obstacle to process implementation of EUV lithography. Here, by means of synchrotron radiation and laboratory measurements we show how carbon contamination occurs as a result of photoelectron-induced surface chemistry. We also demonstrate how a device based on an oxygen ion conducting solid electrolyte can act as a sensitive and reproducible sensor for detection of trace amounts of hydrocarbons in high vacuum environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kyriakou G, Davis DJ, Grant RB, Watson DJ, Keen A, Tikhov MS, Lambert RM (2007) J Phys Chem C 111:4491

    Article  CAS  Google Scholar 

  2. Davis DJ, Kyriakou G, Grant RB, Tikhov MS, Lambert RM (2007) J Phys Chem C 111:12165

    Article  CAS  Google Scholar 

  3. Kyriakou G, Davis DJ, Grant RB, Tikhov MS, Keen A, Pakianathan P, Lambert RM (2006) J Phys Chem B 110:24571

    Article  CAS  Google Scholar 

  4. Davis DJ, Kyriakou G, Grant RB, Tikhov MS, Lambert RM (2007) J Phys Chem C 111:1491

    Article  CAS  Google Scholar 

  5. Boller K, Haelbich RP, Hogrefe H, Jark W, Kunz C (1983) Nucl Instrum Method 208:273

    Article  CAS  Google Scholar 

  6. Moulder JF, Stickle WF, Sobol PE, Bomben KD, (1995) Handbook of X-ray photoelectron spectroscopy physical electronics. Perkin-Elmer, Minnesota

  7. Tanuma S, Powell CJ, Penn DR (2004) Surf Interface Anal 36:1

    Article  CAS  Google Scholar 

  8. Kyriakou G, Davis DJ, Lambert RM (2006) Sens Actuators B Chem 114:1013

    Article  CAS  Google Scholar 

  9. Lawrence N (2006) Talanta 69:385

    Article  CAS  Google Scholar 

  10. Fleming WJ (1977) J Electrochem Soc 124:21

    Article  CAS  Google Scholar 

  11. Radhakrishann R, Virkar AV, Singhal SC, Dunham GC, Marina OA (2005) Sens Acuators B 105:312

    Article  Google Scholar 

  12. Sridhar KR, Blanchard JA, (1999) Sens Actuators B 59:60

    Article  Google Scholar 

  13. Fujiwara Y, Kaimai A, Hong J, Yashiro K, Nigara Y, Kawada T, Mizusaki J (2003) J Electrochem Soc 150:E117

    Article  CAS  Google Scholar 

  14. Eguchi Y, Watanabe S, Kubota N, Takeuchi T, Oshihara T, Takita Y (2000) Sens Actuators B 66:9

    Article  Google Scholar 

  15. Luerßen B, Günther S, Marbach H, Kiskinova M, Janek J, Imbihl R (2000) Chem Phys Lett 316:331

    Article  Google Scholar 

  16. Aita CR, Tran Ngoc C (1984) J Appl Phys 56:958

    Article  CAS  Google Scholar 

  17. Yoshida H, Nonoyama Y, Yazawa Y, Hattori T (2005) Physica Scripta T115:813

    Article  CAS  Google Scholar 

  18. Vayenas CG, Lambert RM, Ladas S, Bebelis S, Neophytides S, Tikhov MS, Filking NC, Makri M, Tsilpakides D, Cavalca C, Besocke K (1997) Studies Surf Sci Catal 112:39

    Article  CAS  Google Scholar 

  19. Derry GN, Ross PN, (1986) J Chem Phys 82:2772

    Article  Google Scholar 

  20. Vayenas CG, Bebelis S, Ladas S, (1990) Nature 343:625

    Article  CAS  Google Scholar 

  21. Davis DJ, Kyriakou G, Lambert RM (2006) J Phys Chem B 110:11958

    Article  CAS  Google Scholar 

  22. Yeh JJ, Lindau I, (1985) Atomic Nucl Data Tables 32:1

    Article  CAS  Google Scholar 

  23. Persden MØ, Helveg S, Ruban A, Stensgaard I, Lægsgaad E, Nørskov JK, Besenbacher F (1999) Surf Sci 426:395

    Article  Google Scholar 

  24. Sachtler JWA, Somorjai GA (1983) J Catal 81:77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from BOC Edwards and the UK Engineering and Physical Sciences Research Council (EPSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriakou, G., Stevens, A.V., Davis, D.J. et al. Amperometric/potentiometric hydrocarbon sensors: real world solutions for use in ultra high vacuum. J Appl Electrochem 38, 1089–1096 (2008). https://doi.org/10.1007/s10800-008-9568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9568-5

Keywords

Navigation