Abstract
Approximately one billion individuals suffer from mental health disorders, such as depression, bipolar disorder, schizophrenia, and anxiety. Mental health professionals use various assessment tools to detect and diagnose these disorders. However, these tools are complex, contain an excessive number of questions, and require a significant amount of time to administer, leading to low participation and completion rates. Additionally, the results obtained from these tools must be analyzed and interpreted manually by mental health professionals, which may yield inaccurate diagnoses. To this extent, this research utilizes advanced analytics and artificial intelligence to develop a decision support system (DSS) that can efficiently detect and diagnose various mental disorders. As part of the DSS development process, the Network Pattern Recognition (NEPAR) algorithm is first utilized to build the assessment tool and identify the questions that participants need to answer. Then, various machine learning models are trained using participants’ answers to these questions and other historical data as inputs to predict the existence and the type of their mental disorder. The results show that the proposed DSS can automatically diagnose mental disorders using only 28 questions without any human input, to an accuracy level of 89%. Furthermore, the proposed mental disorder diagnostic tool has significantly fewer questions than its counterparts; hence, it provides higher participation and completion rates. Therefore, mental health professionals can use this proposed DSS and its accompanying assessment tool for improved clinical decision-making and diagnostic accuracy.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
Data is available only on request, due to privacy/ethical restrictions. Data supporting the findings of this study are available from WeCureX and the DNB Data Analytics Group, LLC. Restrictions apply to the availability of these data, which were used under license for this study.
References
Akhavan Abiri, F., & Shairi, M. R. (2020a). Short Forms of Symptom Checklist (SCL): Investigation of validity & Reliability. Clinical Psychology and Personality, 18(1), 137–162. https://doi.org/10.22070/CPAP.2020.2929
Akhavan Abiri, F., & Shairi, M. R. (2020b). Validity and Reliability of Symptom Checklist-90-Revised (SCL-90-R) and Brief Symptom Inventory-53 (BSI-53). Clinical Psychology and Personality, 17(2), 169–195. https://doi.org/10.22070/CPAP.2020.2916
Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. https://doi.org/10.1016/J.IJINFOMGT.2021.102387
Americans, N., Article, S., Haghir, H., Mokhber, N., Azarpazhooh, M. R., Haghighi, M. B. … Plan, Y. (2013). … World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders. IACAPAP E-Textbook of Child and Adolescent Mental Health, 55(1993), 135–139. https://doi.org/10.4103/0019
Balcombe, L., & De Leo, D. (2021). Digital Mental Health Challenges and the Horizon Ahead for Solutions XSL • FO RenderX. JMIR Ment Health, 8(3), 1. https://doi.org/10.2196/26811
Barker-Collo, S. L. (2003). Culture and validity of the Symptom Checklist-90-Revised and Profile of Mood States in a New Zealand student sample. Cultural Diversity and Ethnic Minority Psychology, 9(2), 185–196. https://doi.org/10.1037/1099-9809.9.2.185
Bernet, W., Baker, A. J. L., & Verrocchio, M. C. (2015). Symptom Checklist-90-Revised Scores in Adult Children Exposed to Alienating Behaviors: An Italian Sample. Journal of Forensic Sciences, 60(2), 357–362. https://doi.org/10.1111/1556-4029.12681
Borgesius, F. J. Z. (2020). Strengthening legal protection against discrimination by algorithms and artificial intelligence. 24(10), 1572–1593. https://doi.org/10.1080/13642987.2020.1743976
Buhmann, A., & Fieseler, C. (2021). Towards a deliberative framework for responsible innovation in artificial intelligence. Technology in Society, 64, 101475. https://doi.org/10.1016/J.TECHSOC.2020.101475
Casado-Lumbreras, C., Rodríguez-González, A., Álvarez-Rodríguez, J. M., & Colomo-Palacios, R. (2012). PsyDis: Towards a diagnosis support system for psychological disorders. Expert Systems with Applications, 39(13), 11391–11403. https://doi.org/10.1016/j.eswa.2012.04.033
Chandler, C., Foltz, P. W., & Elvevåg, B. (2020). Using Machine Learning in Psychiatry: The Need to Establish a Framework That Nurtures Trustworthiness. Schizophrenia Bulletin, 46(1), 11–14. https://doi.org/10.1093/SCHBUL/SBZ105
Chekroud, A. M., Gueorguieva, R., Krumholz, H. M., Trivedi, M. H., Krystal, J. H., & McCarthy, G. (2017). Reevaluating the efficacy and predictability of antidepressant treatments: A symptom clustering approach. JAMA Psychiatry, 74(4), 370–378. https://doi.org/10.1001/jamapsychiatry.2017.0025
Chen, I. H., Lin, C. Y., Zheng, X., & Griffiths, M. D. (2020). Assessing Mental Health for China’s Police: Psychometric Features of the Self-Rating Depression Scale and Symptom Checklist 90-Revised. International Journal of Environmental Research and Public Health 2020, 17(8), 2737. https://doi.org/10.3390/IJERPH17082737.17
Chen, I. Y., Szolovits, P., & Ghassemi, M. (2019). Can AI help reduce disparities in general medical and mental health care? AMA Journal of Ethics, 21(2), 167–179. https://doi.org/10.1001/AMAJETHICS.2019.167
Chen, S., Stromer, D., Alabdalrahim, H. A., Schwab, S., Weih, M., & Maier, A. (2020). Automatic dementia screening and scoring by applying deep learning on clock-drawing tests. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-74710-9
Crawford, K., & Calo, R. (2016). There is a blind spot in AI research. Nature 2016, 538:7625(7625), 311–313. https://doi.org/10.1038/538311a. 538
D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 36, 112–117. https://doi.org/10.1016/J.COPSYC.2020.04.005
D’Aquin, M., Troullinou, P., O, N. E., Cullen, A., Faller, G., & Holden, L. (2018). Towards an “Ethics by Design’’’ Methodology for AI Research Projects.” 18. https://doi.org/10.1145/3278721
Dennehy, D., Pappas, I. O., Wamba, S. F., & Michael, K. (2021). Socially responsible information systems development: the role of AI and business analytics. Information Technology and People, 34(6), 1541–1550. https://doi.org/10.1108/ITP-10-2021-871
Derogatis, L. (2017). Symptom Checklist-90-Revised, Brief Symptom Inventory, and BSI-18. - PsycNET.Handbook of Psychological Assessment in Primary Care Settings,599–629. https://psycnet.apa.org/record/2017-23747-023
Derogatis, L., & Fitzpatrick, M. (2004). The SCL-90-R, the Brief Symptom Inventory (BSI), and the BSI-18. In The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 1–41). https://psycnet.apa.org/record/2004-14941-001
Derogatis, L., & Spencer, P. (1993). Brief Symptom Inventory
Dignum, V., Baldoni, M., Baroglio, C., Caon, M., Chatila, R., Dennis, L. … De Wildt, T. (2018). Ethics by Design: Necessity or Curse? AIES 2018 - Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 18, 60–66. https://doi.org/10.1145/3278721.3278745
Docrat, S., Besada, D., Cleary, S., Daviaud, E., & Lund, C. (2019). Mental health system costs, resources and constraints in South Africa: a national survey. Health Policy and Planning, 34(9), 706–719. https://doi.org/10.1093/HEAPOL/CZZ085
Fabiano, F., & Haslam, N. (2020). Diagnostic inflation in the DSM: A meta-analysis of changes in the stringency of psychiatric diagnosis from DSM-III to DSM-5. Clinical Psychology Review, 80, 101889. https://doi.org/10.1016/J.CPR.2020.101889
Fellmeth, G., Harrison, S., Opondo, C., Nair, M., Kurinczuk, J. J., & Alderdice, F. (2021). Validated screening tools to identify common mental disorders in perinatal and postpartum women in India: a systematic review and meta-analysis. BMC Psychiatry 2021, 21:1(1), 1–10. https://doi.org/10.1186/S12888-021-03190-6. 21
Floridi, L., & Cowls, J. (2021). A Unified Framework of Five Principles for AI in Society. Philosophical Studies Series, 144, 5–17. https://doi.org/10.1007/978-3-030-81907-1_2
Fosso Wamba, S., Bawack, R. E., Guthrie, C., Queiroz, M. M., & Carillo, K. D. A. (2021). Are we preparing for a good AI society? A bibliometric review and research agenda. Technological Forecasting and Social Change, 164, 120482. https://doi.org/10.1016/J.TECHFORE.2020.120482
Fosso Wamba, S., & Queiroz, M. M. (2021). Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions. Information Systems Frontiers, 1–16. https://doi.org/10.1007/S10796-021-10142-8/TABLES/7
Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and indicators of response quality in a web survey. Public Opinion Quarterly, 73(2), 349–360. https://doi.org/10.1093/poq/nfp031
Gallardo-Pujol, D., & Pereda, N. (2013). Person-environment transactions: persionality traits moderate and mediate the effects. Personality and Mental Health, 7(April 2012), 102–113. https://doi.org/10.1002/pmh
Garcia-Zattera, M. J., Mutsvari, T., Jara, A., Declerck, D., & Lesaffre, E. (2010). Correcting for misclassification for a monotone disease process with an application in dental research. Statistics in Medicine, 29(30), 3103–3117. https://doi.org/10.1002/sim.3906
Gerke, S., Minssen, T., & Cohen, G. (2020). Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare, 295–336. https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H. C., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Current Psychiatry Reports 2019, 21:11(11), 1–18. https://doi.org/10.1007/S11920-019-1094-0. 21
Gupta, M., Parra, C. M., & Dennehy, D. (2021). Questioning Racial and Gender Bias in AI-based Recommendations: Do Espoused National Cultural Values Matter? Information Systems Frontiers, 1–17. https://doi.org/10.1007/S10796-021-10156-2/TABLES/5
Hanna, F., Barbui, C., Dua, T., Lora, A., van Altena, M. R., & Saxena, S. (2018). Global mental health: how are we doing? World Psychiatry, 17(3), 368. https://doi.org/10.1002/WPS.20572
Hao, B., Li, L., Li, A., & Zhu, T. (2013). Predicting mental health status on social media a preliminary study on microblog. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8024 LNCS(PART 2), 101–110. https://doi.org/10.1007/978-3-642-39137-8-12
Hardt, J., & Gerbershagen, H. U. (2001). Cross-validation of the SCL-27: A short psychometric screening instrument for chronic pain patients. European Journal of Pain, 5(2), 187–197. https://doi.org/10.1053/eujp.2001.0231
Hardt, J. (2008). The symptom checklist-27-plus (SCL-27-plus): a modern conceptualization of a traditional screening instrument. Psycho-Social Medicine, 5, Doc08
Hastie, T., Tibshirani, R., & Friedman, J. (2009). Support Vector Machines and Flexible Discriminants. In The elements of statistical learning (pp. 1–42). https://doi.org/10.1007/b94608_12
Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer Series in Statistics
Hildenbrand, A. K., Nicholls, E. G., Aggarwal, R., Brody-Bizar, E., & Daly, B. P. (2015). Symptom Checklist-90-Revised (SCL-90-R). The Encyclopedia of Clinical Psychology, 1–5. https://doi.org/10.1002/9781118625392.wbecp495
Holi, M. (2003). Assessment of psychiatric symptoms using the SCL-90. [Matti Holi]
IBM (2020). Trustworthy AI. https://www.ibm.com/watson/trustworthy-ai
Imperatori, C., Bianciardi, E., Niolu, C., Fabbricatore, M., Gentileschi, P., Lorenzo, G. … Innamorati, M. (2020). The Symptom-Checklist-K-9 (SCL-K-9) Discriminates between Overweight/Obese Patients with and without Significant Binge Eating Pathology: Psychometric Properties of an Italian Version. Nutrients 2020, 12(3), 674. https://doi.org/10.3390/NU12030674. 12
Iphofen, R., & Kritikos, M. (2019). Regulating artificial intelligence and robotics: ethics by design in a digital society. https://doi.org/10.1080/21582041.201816
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 103). Springer New York. https://doi.org/10.1007/978-1-4614-7138-7
Jenkins, R., Kydd, R., Mullen, P., Thomson, K., Sculley, J., Kuper, S. … Wong, M. L. (2010). International migration of doctors, and its impact on availability of psychiatrists in low and middle income countries. PLoS ONE, 5(2), 1–9. https://doi.org/10.1371/journal.pone.0009049
Johnson, M., Albizri, A., & Harfouche, A. (2021). Responsible Artificial Intelligence in Healthcare: Predicting and Preventing Insurance Claim Denials for Economic and Social Wellbeing. Information Systems Frontiers, 1–17. https://doi.org/10.1007/s10796-021-10137-5
Johnson, M., Albizri, A., Harfouche, A., & Tutun, S. (2021). Digital transformation to mitigate emergency situations: increasing opioid overdose survival rates through explainable artificial intelligence. Industrial Management and Data Systems. https://doi.org/10.1108/IMDS-04-2021-0248/FULL/XML
Johnson, M., Albizri, A., & Simsek, S. (2020). Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis. Annals of Operations Research, 1–31. https://doi.org/10.1007/s10479-020-03872-6
Khan, M. E., & Tutun, S. (2021). Understanding and Predicting Organ Donation Outcomes Using Network-based Predictive Analytics. Procedia Computer Science, 185, 185–192. https://doi.org/10.1016/J.PROCS.2021.05.020
Khanal, P., Devkota, N., Dahal, M., Paudel, K., & Joshi, D. (2020). Mental health impacts among health workers during COVID-19 in a low resource setting: a cross-sectional survey from Nepal. Globalization and Health, 2020 16:1(1), 1–12. https://doi.org/10.1186/S12992-020-00621-Z. 16
Kilbourne, A. M., Beck, K., Spaeth-Rublee, B., Ramanuj, P., O’Brien, R. W., Tomoyasu, N., & Pincus, H. A. (2018). Measuring and improving the quality of mental health care: a global perspective. World Psychiatry, 17(1), 30–38. https://doi.org/10.1002/WPS.20482
Kim, J. H., & Jang, S. (2016). The Relationship Between Job Stress, Job Satisfaction, and the Symptom Checklist-90-Revision (SCL-90-R) in Marine Officers on Board. Journal of Preventive Medicine and Public Health, 49(6), 376. https://doi.org/10.3961/JPMPH.16.046
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A. … Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3521–3526. https://doi.org/10.1073/PNAS.1611835114/-/DCSUPPLEMENTAL
Kruyen, P. M., Emons, W. H. M., & Sijtsma, K. (2013). On the Shortcomings of Shortened Tests: A Literature Review. International Journal of Testing, 13(3), 223–248. https://doi.org/10.1080/15305058.2012.703734
Li, P., Wang, F., Ji, G. Z., Miao, L., You, S., & Chen, X. (2018). The psychological results of 438 patients with persisting GERD symptoms by Symptom Checklist 90-Revised (SCL-90-R) questionnaire. Medicine (United States), 97(5), 10768. https://doi.org/10.1097/MD.0000000000009783
Lin, L., Hu, P. J. H., & Liu Sheng, O. R. (2006). A decision support system for lower back pain diagnosis: Uncertainty management and clinical evaluations. Decision Support Systems, 42(2), 1152–1169. https://doi.org/10.1016/j.dss.2005.10.007
Lundqvist, L. O., & Schröder, A. (2021). Evaluation of the SCL-9S, a short version of the symptom checklist-90-R, on psychiatric patients in Sweden by using Rasch analysis. https://doi.org/10.1080/08039488.2021.1901988
Luxton, D. D. (2016). An Introduction to Artificial Intelligence in Behavioral and Mental Health Care. Artificial Intelligence in Behavioral and Mental Health Care, 1–26. https://doi.org/10.1016/B978-0-12-420248-1.00001-5
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), https://doi.org/10.1177/2053951716679679
Mittelstadt, B. D., & Floridi, L. (2016). The Ethics of Big Data: Current and Foreseeable Issues in Biomedical Contexts. The Ethics of Biomedical Big Data (1st ed., pp. 445–480). Cham: Springer. https://doi.org/10.1007/978-3-319-33525-4_19
Morley, J., Machado, C., Burr, C., Cowls, J., Taddeo, M., & Floridi, L. (2019). The Debate on the Ethics of AI in Health Care: A Reconstruction and Critical Review. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.3486518
Mueller, A., Candrian, G., Grane, V. A., Kropotov, J. D., Ponomarev, V. A., & Baschera, G. M. (2011). Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: A validation study. Nonlinear Biomedical Physics, 5(1), 1–18. https://doi.org/10.1186/1753-4631-5-5
Nie, D., Ning, Y., & Zhu, T. (2012). Predicting mental health status in the context of web browsing. Proceedings of the 2012 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, WI-IAT 2012, 185–189. https://doi.org/10.1109/WI-IAT.2012.196
Ogasawara, K., Nakamura, Y., Kimura, H., Aleksic, B., & Ozaki, N. (2017). Issues on the diagnosis and etiopathogenesis of mood disorders: reconsidering DSM-5. Journal of Neural Transmission, 2017 125:2(2), 211–222. https://doi.org/10.1007/S00702-017-1828-2. 125
Olsen, L. R., Mortensen, E. L., & Bech, P. (2004). Prevalence of major depression and stress indicators in the Danish general population. Acta Psychiatrica Scandinavica, 109(2), 96–103. https://doi.org/10.1046/j.0001-690X.2003.00231.x
Park, S. C., & Kim, Y. K. (2020). Anxiety Disorders in the DSM-5: Changes, Controversies, and Future Directions. Advances in Experimental Medicine and Biology, 1191, 187–196. https://doi.org/10.1007/978-981-32-9705-0_12
Parra, C. M., Gupta, M., & Mikalef, P. (2021). Information and communication technologies (ICT)-enabled severe moral communities and how the (Covid19) pandemic might bring new ones. International Journal of Information Management, 57, 102271. https://doi.org/10.1016/J.IJINFOMGT.2020.102271
Pechenizkiy, M., Tsymbal, A., Puuronen, S., & Pechenizkiy, O. (2006). Class noise and supervised learning in medical domains: The effect of feature extraction. Proceedings - IEEE Symposium on Computer-Based Medical Systems, 2006, 708–713. https://doi.org/10.1109/CBMS.2006.65
Perkins, A., Ridler, J., Browes, D., Peryer, G., Notley, C., & Hackmann, C. (2018). Experiencing mental health diagnosis: a systematic review of service user, clinician, and carer perspectives across clinical settings. The Lancet Psychiatry, 5(9), 747–764. https://doi.org/10.1016/S2215-0366(18)30095-6
Petersen, I., Bhana, A., Fairall, L. R., Selohilwe, O., Kathree, T., Baron, E. C. … Lund, C. (2019). Evaluation of a collaborative care model for integrated primary care of common mental disorders comorbid with chronic conditions in South Africa. BMC Psychiatry 2019, 19:1(1), 1–11. https://doi.org/10.1186/S12888-019-2081-Z. 19
Price, W. N. I. (2019). Medical AI and Contextual Bias. Harvard Journal of Law & Technology (Harvard JOLT), 33. https://heinonline.org/HOL/Page?handle=hein.journals/hjlt33&id=71&div=&collection=
Prinz, U., Nutzinger, D. O., Schulz, H., Petermann, F., Braukhaus, C., & Andreas, S. (2013). Comparative psychometric analyses of the SCL-90-R and its short versions in patients with affective disorders. BMC Psychiatry, 13, 1–9. https://doi.org/10.1186/1471-244X-13-104
Ransing, R., Ramalho, R., Orsolini, L., Adiukwu, F., Gonzalez-Diaz, J. M., Larnaout, A. … Kilic, O. (2020). Can COVID-19 related mental health issues be measured? Brain, Behavior, and Immunity, 88, 32. https://doi.org/10.1016/J.BBI.2020.05.049
Razzouk, D., Mari, J. J., Shirakawa, I., Wainer, J., & Sigulem, D. (2006). Decision support system for the diagnosis of schizophrenia disorders. Brazilian Journal of Medical and Biological Research, 39(1), 119–128
Ritchie, H. (2018). Global burden of disease studies: Implications for mental and substance use disorders. In Health Affairs. Issue 6). Project HOPE, 35, https://doi.org/10.1377/HLTHAFF.2016.0082
Rovini, E., Maremmani, C., Moschetti, A., Esposito, D., & Cavallo, F. (2018). Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches. Annals of Biomedical Engineering, 46(12), 2057–2068. https://doi.org/10.1007/s10439-018-2104-9
Rytilä-Manninen, M., Fröjd, S., Haravuori, H., Lindberg, N., Marttunen, M., Kettunen, K., & Therman, S. (2016). Psychometric properties of the Symptom Checklist-90 in adolescent psychiatric inpatients and age- and gender-matched community youth. Child and Adolescent Psychiatry and Mental Health 2016 10:1, 10(1), 1–12. https://doi.org/10.1186/S13034-016-0111-X
Schmitz, N., Hartkamp, N., Kiuse, J., Franke, G. H., Reister, G., & Tress, W. (2000). The Symptom Check-List-90-R (SCL-90-R): A German validation study. Quality of Life Research, 9(2), 185–193. https://doi.org/10.1023/A:1008931926181
Schönberger, D. (2019). Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications. International Journal of Law and Information Technology, 27(2), 171–203. https://doi.org/10.1093/IJLIT/EAZ004
Sereda, Y., & Dembitskyi, S. (2016). Validity assessment of the symptom checklist SCL-90-R and shortened versions for the general population in Ukraine. BMC Psychiatry 2016 16:1, 16(1), 1–11. https://doi.org/10.1186/S12888-016-1014-3
Simsek, S., Albizri, A., Johnson, M., Custis, T., & Weikert, S. (2020). Predictive data analytics for contract renewals: a decision support tool for managerial decision-making. Journal of Enterprise Information Management. https://doi.org/10.1108/JEIM-12-2019-0375
Sinyor, M., Schaffer, A., & Levitt, A. (2010). The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial: A review. Canadian Journal of Psychiatry, 55(3), 126–135. https://doi.org/10.1177/070674371005500303
Sleep, C., Lynam, D. R., & Miller, J. D. (2021). Personality impairment in the DSM-5 and ICD-11: Current standing and limitations. Current Opinion in Psychiatry, 34(1), 39–43. https://doi.org/10.1097/YCO.0000000000000657
Stewart, S. L., Celebre, A., Hirdes, J. P., & Poss, J. W. (2020). Risk of Suicide and Self-harm in Kids: The Development of an Algorithm to Identify High-Risk Individuals Within the Children’s Mental Health System. Child Psychiatry and Human Development, 51(6), 913. https://doi.org/10.1007/S10578-020-00968-9
Thieme Anja, B., & Doherty Gavin. (2020). Machine Learning in Mental Health. ACM Transactions on Computer-Human Interaction (TOCHI), 27(5), 34. https://doi.org/10.1145/3398069
Trivedi, M. H., Kern, J. K., Grannemann, B. D., Altshuler, K. Z., & Sunderajan, P. (2004). A computerized clinical decision support system as a means of implementing depression guidelines. Psychiatric Services, 55(8), 879–885. https://doi.org/10.1176/appi.ps.55.8.879
Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The ethics of algorithms: key problems and solutions. AI & SOCIETY 2021, 1, 1–16. https://doi.org/10.1007/S00146-021-01154-8
Tutun, S., Khasawneh, M. T., & Zhuang, J. (2017). New framework that uses patterns and relations to understand terrorist behaviors. Expert Systems with Applications, 78, 358–375. https://doi.org/10.1016/J.ESWA.2017.02.029
Tutun, S., Tosyali, A., Sangrody, H., Khasawneh, M., Johnson, M., Albizri, A., & Harfouche, A. (2022). Artificial intelligence in energy industry: forecasting electricity consumption through cohort intelligence & adaptive neural fuzzy inference system. Https://Doi.Org, 2046514, 1–18. https://doi.org/10.1080/2573234X.2022.2046514
Urbán, R., Arrindell, W. A., Demetrovics, Z., Unoka, Z., & Timman, R. (2016). Cross-cultural confirmation of bi-factor models of a symptom distress measure: Symptom Checklist-90-Revised in clinical samples. Psychiatry Research, 239, 265–274. https://doi.org/10.1016/J.PSYCHRES.2016.03.039
Wainberg, M. L., Scorza, P., Shultz, J. M., Helpman, L., Mootz, J. J., Johnson, K. A. … Arbuckle, M. R. (2017). Challenges and Opportunities in Global Mental Health: a Research-to-Practice Perspective. Current Psychiatry Reports, 19(5), 28. https://doi.org/10.1007/S11920-017-0780-Z
Wang, W. M., & Cheung, C. F. (2011). A narrative-based reasoning with applications in decision support for social service organizations. Expert Systems with Applications, 38(4), 3336–3345. https://doi.org/10.1016/j.eswa.2010.08.118
WHO (2018). Mental health: strengthening our response. https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response
WHO (2020). World Mental Health Day: an opportunity to kick-start a massive scale-up in investment in mental health. https://www.who.int/news/item/27-08-2020-world-mental-health-day-an-opportunity-to-kick-start-a-massive-scale-up-in-investment-in-mental-health
Zhang, Z., Lin, W., Liu, M., & Mahmoud, M. (2020). Multimodal Deep Learning Framework for Mental Disorder Recognition. Proceedings – 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, 344–350. https://doi.org/10.1109/FG47880.2020.00033
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tutun, S., Johnson, M.E., Ahmed, A. et al. An AI-based Decision Support System for Predicting Mental Health Disorders. Inf Syst Front 25, 1261–1276 (2023). https://doi.org/10.1007/s10796-022-10282-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10796-022-10282-5