Skip to main content

Advertisement

Log in

Z-LASIK and Trans-PRK for correction of high-grade myopia: safety, efficacy, predictability and clinical outcomes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to examine the outcomes of transepithelial photorefractive keratectomy (Trans-PRK) and Femtosecond Laser-assisted in situ keratomileusis (Z-LASIK) for the correction of high myopia.

Methods

A retrospective cohort study design was used. The study group included 792 eyes with high-grade myopia (− 6.0 diopters or higher) or high-grade myopia with astigmatism that were treated with Z-LASIK or Trans-PRK in 2013 through 2014 in an optical outpatient clinic of a large private medical service. The Trans-PRK group comprised of 674 eyes with a spherical equivalent (SE) of − 7.87 ± 1.46 and the Z-LASIK group comprised of 118 eyes with a SE of − 7.19 ± 0.81 (P < 0.001).

Results

The mean postoperative SE in the Trans-PRK group was − 0.06 and − 0.02 in the Z-LASIK group (P = 0.545). Efficacy index values were 0.92 in the Trans-PRK group and 0.95 in the Z-LASIK group (P = 0.083), and corresponding safety index values were 0.95 and 0.97 (P = 0.056). An UCVA of 20/40 or better was achieved in 94.20% of eyes in the Trans-PRK group, and 98.31% in the Z-LASIK group (P = 0.063). The majority of eyes in both the Trans-PRK and Z-LASIK groups were within ± 0.5D of attempted correction: 59.35 and 64.71%, respectively (P = 0.271).

Conclusions

Both Trans-PRK and Z-LASIK demonstrated excellent efficacy, safety and predictability profiles, with results comparable and in some cases superior to the current literature. Results of Z-LASIK were slightly better than those of Trans-PRK, though the preoperative SE of the latter was higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hori-Komai Y, Toda I, Asano-Kato N, Tsubota K (2002) Reasons for not performing refractive surgery. J Cataract Refract Surg 28(5):795–797

    Article  PubMed  Google Scholar 

  2. Bamashmus M, Saleh MF, Abdulrahman M, Al-Kershy N (2010) Reasons for not performing LASIK in refractive surgery candidates in Yemen. Eur J Ophthalmol 20(5):858–864

    Article  PubMed  Google Scholar 

  3. Loewenstein A, Lipshitz I, Varssano D, Lazar M (1997) Complications of excimer laser photorefractive keratectomy for myopia. J Cataract Refract Surg 23(8):1174–1176

    Article  CAS  PubMed  Google Scholar 

  4. Alio JL, Artola A, Claramonte PJ, Ayala MJ, Sanchez SP (1998) Complications of photorefractive keratectomy for myopia: two year follow-up of 3000 cases. J Cataract Refract Surg 24(5):619–626

    Article  CAS  PubMed  Google Scholar 

  5. Luger MH, Ewering T, Arba-Mosquera S (2012) Consecutive myopia correction with transepithelial versus alcohol-assisted photorefractive keratectomy in contralateral eyes: one-year results. J Cataract Refract Surg 38(8):1414–1423. https://doi.org/10.1016/j.jcrs.2012.03.028

    Article  PubMed  Google Scholar 

  6. Fadlallah A, Fahed D, Khalil K, Dunia I, Menassa J, El Rami H, Chlela E, Fahed S (2011) Transepithelial photorefractive keratectomy: clinical results. J Cataract Refract Surg 37(10):1852–1857. https://doi.org/10.1016/j.jcrs.2011.04.029

    Article  PubMed  Google Scholar 

  7. Wang DM, Du Y, Chen GS, Tang LS, He JF (2012) Transepithelial photorefractive keratectomy mode using SCHWIND-ESIRIS excimer laser: initial clinical results. Int J Ophthalmol 5(3):334–337. https://doi.org/10.3980/j.issn.2222-3959.2012.03.16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ambrosio R Jr, Wilson S (2003) LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol 18(1):2–10

    Article  PubMed  Google Scholar 

  9. Shortt AJ, Bunce C, Allan BD (2006) Evidence for superior efficacy and safety of LASIK over photorefractive keratectomy for correction of myopia. Ophthalmology 113(11):1897–1908. https://doi.org/10.1016/j.ophtha.2006.08.013

    Article  PubMed  Google Scholar 

  10. Melki SA, Azar DT (2001) LASIK complications: etiology, management, and prevention. Surv Ophthalmol 46(2):95–116

    Article  CAS  PubMed  Google Scholar 

  11. Schallhorn SC, Amesbury EC, Tanzer DJ (2006) Avoidance, recognition, and management of LASIK complications. Am J Ophthalmol 141(4):733–739. https://doi.org/10.1016/j.ajo.2005.11.036

    Article  PubMed  Google Scholar 

  12. Wang B, Naidu RK, Chu R, Dai J, Qu X, Zhou H (2015) Dry eye disease following refractive surgery: a 12-month follow-up of SMILE versus FS-LASIK in high myopia. J Ophthalmol 2015:132417. https://doi.org/10.1155/2015/132417

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meyer CH, Mennel S, Schmidt JC (2009) Acute keratoconus-like hydrops after laser in situ keratomileusis. J Ophthalmol 2009:363482. https://doi.org/10.1155/2009/363482

    Article  PubMed  Google Scholar 

  14. Wu W, Wang Y (2015) The correlation analysis between corneal biomechanical properties and the surgically induced corneal high-order aberrations after small incision lenticule extraction and femtosecond laser in situ keratomileusis. J Ophthalmol 2015:758196. https://doi.org/10.1155/2015/758196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutton G, Lawless M, Hodge C (2014) Laser in situ keratomileusis in 2012: a review. Clin Exp Optom 97(1):18–29. https://doi.org/10.1111/cxo.12075

    Article  PubMed  Google Scholar 

  16. Kymionis GD, Kounis GA, Grentzelos MA, Panagopoulou SI, Kandarakis SA, Krasia MS (2011) Interface corneal stromal irregularities after flap creation using femtosecond laser. Eur J Ophthalmol 21(2):207–209

    Article  PubMed  Google Scholar 

  17. Dada T, Pangtey MS, Sharma N, Vajpayee RB, Jhanji V, Sethi HS (2006) Hyeropic shift after LASIK induced diffuse lamellar keratitis. BMC Ophthalmol 6:19. https://doi.org/10.1186/1471-2415-6-19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tatar MG, Aylin Kantarci F, Yildirim A, Uslu H, Colak HN, Goker H, Gurler B (2014) Risk factors in post-LASIK corneal ectasia. J Ophthalmol 2014:204191. https://doi.org/10.1155/2014/204191

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khoramnia R, Salgado JP, Lohmann CP, Kobuch KA, von Mohrenfels CW (2012) Precision, morphology, and histology of corneal flap cuts using a 200-kHz femtosecond laser. Eur J Ophthalmol 22(2):161–167. https://doi.org/10.5301/EJO.2011.8376

    Article  PubMed  Google Scholar 

  20. Vestergaard A, Ivarsen A, Asp S, Hjortdal JO (2013) Femtosecond (FS) laser vision correction procedure for moderate to high myopia: a prospective study of ReLEx((R)) flex and comparison with a retrospective study of FS-laser in situ keratomileusis. Acta Ophthalmol 91(4):355–362. https://doi.org/10.1111/j.1755-3768.2012.02406.x

    Article  PubMed  Google Scholar 

  21. Ang M, Mehta JS, Rosman M, Li L, Koh JC, Htoon HM, Tan D, Chan C (2013) Visual outcomes comparison of 2 femtosecond laser platforms for laser in situ keratomileusis. J Cataract Refract Surg 39(11):1647–1652. https://doi.org/10.1016/j.jcrs.2013.04.044

    Article  PubMed  Google Scholar 

  22. Tomita M, Watabe M, Yukawa S, Nakamura N, Nakamura T, Magnago T (2014) Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system. J Cataract Refract Surg 40(2):251–258. https://doi.org/10.1016/j.jcrs.2013.07.043

    Article  PubMed  Google Scholar 

  23. Kulkamthorn T, Silao JN, Torres LF, Lim JN, Purcell TL, Tantayakom T, Schanzlin DJ (2008) Wavefront-guided laser in situ keratomileusis in the treatment of high myopia by using the CustomVue wavefront platform. Cornea 27(7):787–790. https://doi.org/10.1097/ICO.0b013e31816a3554

    Article  PubMed  Google Scholar 

  24. Kojima T, Hallak JA, Azar DT (2008) Control-matched analysis of laser in situ keratomileusis outcomes in high myopia. J Cataract Refract Surg 34(4):544–550. https://doi.org/10.1016/j.jcrs.2007.11.031

    Article  PubMed  Google Scholar 

  25. Stonecipher KG, Kezirian GM, Stonecipher M (2010) LASIK for − 6.00 to − 12.00 D of myopia with up to 3.00 D of cylinder using the ALLEGRETTO WAVE: 3- and 6-month results with the 200- and 400-Hz platforms. J Refract Surg 26(10):S814–S818. https://doi.org/10.3928/1081597X-20100921-08

    Article  PubMed  Google Scholar 

  26. Alio JL, Vega-Estrada A, Pinero DP (2011) Laser-assisted in situ keratomileusis in high levels of myopia with the amaris excimer laser using optimized aspherical profiles. American journal of ophthalmology 152(6):954–963. https://doi.org/10.1016/j.ajo.2011.05.009

    Article  PubMed  Google Scholar 

  27. Hashmani N, Hashmani S, Ramesh P, Rajani H, Ahmed J, Kumar J, Kumar A, Jamali M (2017) A comparison of visual outcomes and patient satisfaction between photorefractive keratectomy and femtosecond laser-assisted in situ keratomileusis. Cureus 9(9):e1641. https://doi.org/10.7759/cureus.1641

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ghadhfan F, Al-Rajhi A, Wagoner MD (2007) Laser in situ keratomileusis versus surface ablation: visual outcomes and complications. J Cataract Refract Surg 33(12):2041–2048. https://doi.org/10.1016/j.jcrs.2007.07.026

    Article  PubMed  Google Scholar 

  29. Aslanides IM, Georgoudis PN, Selimis VD, Mukherjee AN (2015) Single-step transepithelial ASLA (SCHWIND) with mitomycin-C for the correction of high myopia: long term follow-up. Clin Ophthalmol 9:33–41. https://doi.org/10.2147/OPTH.S73424

    Article  CAS  PubMed  Google Scholar 

  30. Gazieva L, Beer MH, Nielsen K, Hjortdal J (2011) A retrospective comparison of efficacy and safety of 680 consecutive lasik treatments for high myopia performed with two generations of flying-spot excimer lasers. Acta Ophthalmol 89(8):729–733. https://doi.org/10.1111/j.1755-3768.2009.01830.x

    Article  PubMed  Google Scholar 

  31. Alio JL, Muftuoglu O, Ortiz D, Perez-Santonja JJ, Artola A, Ayala MJ, Garcia MJ, de Luna GC (2008) Ten-year follow-up of laser in situ keratomileusis for myopia of up to − 10 diopters. Am J Ophthalmol 145(1):46–54. https://doi.org/10.1016/j.ajo.2007.09.010

    Article  PubMed  Google Scholar 

  32. Chamon W, Alleman N (2008) Refractive surgery outcomes and frequency of complications in management of complications in refractive surgery. Springer, Berlin

    Google Scholar 

  33. Sekundo W, Bonicke K, Mattausch P, Wiegand W (2003) Six-year follow-up of laser in situ keratomileusis for moderate and extreme myopia using a first-generation excimer laser and microkeratome. J Cataract Refract Surg 29(6):1152–1158

    Article  PubMed  Google Scholar 

  34. Kymionis GD, Tsiklis NS, Astyrakakis N, Pallikaris AI, Panagopoulou SI, Pallikaris IG (2007) Eleven-year follow-up of laser in situ keratomileusis. J Cataract Refract Surg 33(2):191–196. https://doi.org/10.1016/j.jcrs.2006.11.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Bahar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gershoni, A., Mimouni, M., Livny, E. et al. Z-LASIK and Trans-PRK for correction of high-grade myopia: safety, efficacy, predictability and clinical outcomes. Int Ophthalmol 39, 753–763 (2019). https://doi.org/10.1007/s10792-018-0868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-0868-4

Keywords

Navigation