Skip to main content
Log in

Establishing fundamentals of the mechanics of nanocomposites

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper proposes a basic approach to study the mechanical properties of nanocomposite materials with polymer matrix and the deformation of nanocomposites and structural members made of them. The notions of homogenization and continualization are discussed with reference to nanocomposite materials. Four main tasks for nanocomposite mechanics are defined: (i) description of the properties of nanoformations, (ii) description of the properties of the matrix (binder), (iii) description of phenomena at the matrix-nanoformations interfaces, and (iv) determination of the effective properties of nanocomposites to change over to the mechanics of structural members. Particular attention is given to the interface conditions between the matrix and reinforcement. The role of lower and upper bound estimates is pointed out. The basic models of linear or nonlinear micro-and nanocomposites are considered. These models are used in a numerical analysis. The analysis makes it possible to observe and describe the peculiarities of the processes of fracture, deformation, and wave propagation in nanocomposite materials with polymer matrix. The numerical results are presented in the form of plots

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, Oxford (1954).

    Google Scholar 

  2. G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  3. G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).

    Google Scholar 

  4. A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  5. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  6. A. N. Guz, Mechanics of Compressive Failure of Composite Materials [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  7. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  8. I. A. Guz, “Estimation of critical loading parameters for composites with imperfect layer contact,” Int. Appl. Mech., 28, No. 5, 291–296 (1992).

    Article  MathSciNet  Google Scholar 

  9. L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York (1974).

    Google Scholar 

  10. A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003).

    Google Scholar 

  11. H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).

    Google Scholar 

  12. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  13. G. Lubin (ed.), Handbook of Composites, Van Nostrand Reinhold Company, New York (1982).

    Google Scholar 

  14. A. Bedford and G. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 21, 863–960 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. A. Buryachenko, A. Roy, K. Lafdi, K. L. Anderson, and S. Chellapilla, “Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation,” Composites Science and Technology, 65, 2435–2465 (2005).

    Article  Google Scholar 

  16. P. J. F. Harris (ed.), Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  17. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).

    Article  Google Scholar 

  18. A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials, in 6 vols., Pergamon Press, Amsterdam (2000).

    Google Scholar 

  19. I. Milne, R. O. Ritchie, and B. Karihaloo (eds.), Comprehensive Structural Integrity, in 10 vols., Elsevier, New York (2003).

    Google Scholar 

  20. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin (2001).

    Google Scholar 

  21. E. K. Drexler, Engines of Creation, the Coming Age of Nanotechnology, Fourth Estate, London (1990).

    Google Scholar 

  22. S. J. V. Frankland and V. M. Harik, Analysis of Carbon Nanotube Pull-out from a Polymer Matrix, NASA/CR-2002-211743, ICASE Report No. 2002-23 (2002).

  23. S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, The Stress-Strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulations, NASA/CR-2002-211953, ICASE Report No. 2002-41 (2002).

  24. A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).

    Article  MathSciNet  Google Scholar 

  25. A. N. Guz, “On two-level model in the mesomechanics of compressive fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).

    Article  Google Scholar 

  26. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer Verlag, Berlin (1999).

    MATH  Google Scholar 

  27. A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).

    Article  Google Scholar 

  28. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  29. I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).

    Article  Google Scholar 

  30. I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers and carbon nanotubes),” Mech. Comp. Mater., 40, No. 3, 179–190 (2004).

    Article  Google Scholar 

  31. I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Google Scholar 

  32. A. Kelly, “Composites in context,” Composites Science and Technology, 23, 171–199 (1985).

    Article  Google Scholar 

  33. K. T. Lau and D. Hui, “The revolutionary creating of new advanced carbon nanotube composite,” Composites. Part B: Engineering, 33, 263–277 (2002).

    Article  Google Scholar 

  34. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego (2000).

    Google Scholar 

  35. D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, 495–530 (2002).

    Article  Google Scholar 

  36. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” App. Mech. Rev., 52, No. 2, 35–74 (1999).

    Article  Google Scholar 

  37. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).

    Article  Google Scholar 

  38. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).

    Article  Google Scholar 

  39. J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).

    Article  Google Scholar 

  40. D. Srivastava, Ch. Wei, and K. Chao, “Nanomechanics of carbon nanotubes and composites,” Appl. Mech. Rev., 56, 215–229 (2003).

    Article  Google Scholar 

  41. E. T. Thostenson, L. Chunyu, and T. W. Chou, “Nano-composites in context. (Review),” Composites Science and Technology, 65, 491–516 (2005).

    Article  Google Scholar 

  42. R. A. Vaia and H. D. Wagner, “Framework for nanocomposites,” Materials Today, 4, No. 10, 32–37 (2004).

    Article  Google Scholar 

  43. H. D. Wagner and R. A. Vaia, “Nanocomposites: issues the interface,” Materials Today, 4, No. 10, 38–42 (2004).

    Article  Google Scholar 

  44. N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall/CRC, Boca Raton-London (2002).

    Google Scholar 

  45. J. R. Xiao, B. A. Gama, and J. W. Gillespie, Jr., “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” Int. J. Solids Struct., 42, 3075–3092 (2005).

    Article  MATH  Google Scholar 

  46. B. I. Yakobson and P. Avouris, “Mechanical properties of carbon nanotubes,” in: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (eds.), Topics in Advanced Physics, Vol. 80, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin (2001), pp. 287–329.

    Google Scholar 

  47. P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation,” J. Mech. Phys. Solids, 52, 977–998 (2004).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 43, No. 3, pp. 3–36, March 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N., Rushchitsky, J.J. & Guz, I.A. Establishing fundamentals of the mechanics of nanocomposites. Int Appl Mech 43, 247–271 (2007). https://doi.org/10.1007/s10778-007-0021-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-007-0021-y

Keywords

Navigation