Skip to main content
Log in

Weak solutions to a nonlinear variational wave equation and some related problems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we present some results on the global existence of weak solutions to a nonlinear variational wave equation and some related problems. We first introduce the main tools, the L p Young measure theory and related compactness results, in the first section. Then we use the L p Young measure theory to prove the global existence of dissipative weak solutions to the asymptotic equation of the nonlinear wave equation, and comment on its relation to Camassa-Holm equations in the second section. In the third section, we prove the global existence of weak solutions to the original nonlinear wave equation under some restrictions on the wave speed. In the last section, we present global existence of renormalized solutions to two-dimensional model equations of the asymptotic equation, which is also the so-called vortex density equation arising from sup-conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bressan, Ping Zhang, and Yuxi Zheng: On the asymptotic variational wave equations. Archive for Rational Mechanics and Analysis. Online 2006.

  2. R. Camassa, D. Holm: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993), 1661–1664.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. S. Chapman, J. Rubinstein, and M. Schatzman: A mean-field model of superconducting vortices. Eur. J. Appl. Math. 7 (1996), 97–111.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Constantin, J. Escher: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181 (1998), 229–243.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. J. DiPerna: Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91 (1983), 1–30.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. J. DiPerna, P.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511–547.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. J. DiPerna, P.-L. Lions: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989), 321–366.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. J. DiPerna, A. J. Majda: Oscillations and concentration in weak solutions of the incompressible uid equations. Commun. Math. Phys. 108 (1987), 667–689.

    Article  MATH  MathSciNet  Google Scholar 

  9. Qiang Du, Ping Zhang: Existence of weak solutions to some vortex density models. SIAM J. Math. Anal. 34 (2003), 1279–1299.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Weinan: Dynamics of vortex liquids in Ginsburg-Landau theories with application to superconductivity. Phys. Rev. B 50 (1994), 1126–1135.

    Article  Google Scholar 

  11. L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS No. 74. AMS, Providence, 1990.

    Google Scholar 

  12. E. Feireisl, A. Novotný, and H. Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358–392.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Fuchssteiner, A. S. Fokas: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4 (1981/1982), 47–66.

    Article  MathSciNet  Google Scholar 

  14. R. T. Glassey, J. K. Hunter, and Yuxi Zheng: Singularities and oscillations in a nonlinear variational wave equation. In: Singularities and Oscillations. IMA, Vol. 91 (J. Rauch, M. Taylor, eds.). Springer-Verlag, New York, 1997, pp. 37–60.

    Google Scholar 

  15. R. T. Glassey, J. K. Hunter, and Yuxi Zheng: Singularities of a variational wave equation. J. Differ. Equations 129 (1996), 49–78.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Grundland E. Infeld: A family of nonlinear Klein-Gordon equations and their solutions. J. Math. Phys. 33 (1992), 2498–2503.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. K. Hunter, R. A. Saxton: Dynamics of director-fields. SIAM J. Appl. Math. 51 (1991), 1498–1521.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. K. Hunter, Yuxi Zheng: On a nonlinear hyperbolic variational equation I and II. Arch. Ration. Mech. Anal. 129 (1995), 305–353, 355–383.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. L. Jerrard, H. M. Soner: Dynamics of Ginzburg-Landau vortices. Arch. Ration. Mech. Anal. 142 (1998), 99–125.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. L. Joly, G. Metivier, and J. Rauch: Focusing at a point and absorption of nonlinear oscillations. Trans. Am. Math. Soc. 347 (1995), 3921–3969.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Gérard: Microlocal defect measures. Commun. Partial Differ. Equations 16 (1991), 1761–1794.

    MATH  Google Scholar 

  22. Fanghua Lin: Some dynamical properties of Ginzburg-Landau vortices. Commun. Pure Appl. Math. 49 (1996), 323–359.

    Article  MATH  Google Scholar 

  23. Fanghua Lin, Ping Zhang: On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dyn. Syst. 6 (2000), 121–142.

    MATH  MathSciNet  Google Scholar 

  24. P.-L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models. Oxford Lecture Series in Mathematics and Its Applications. Clarendon Press, Oxford, 1998.

    Google Scholar 

  25. P.-L. Lions, N. Masmoudi: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21 (2000), 131–146.

    Article  MATH  MathSciNet  Google Scholar 

  26. N. Masmoudi, Ping Zhang: Weak solutions to the vortex density equations arising from sup-conductivity. Ann. Inst. Henri Poincaré, Anal. Non Lináire 22 (2005), 441–458.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Mckean: Breakdown of shallow water equation. Asian J. Math. 2 (1998), 867–874.

    MATH  MathSciNet  Google Scholar 

  28. F. Murat: Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV 5 (1978), 489–507.

    MATH  MathSciNet  Google Scholar 

  29. R. A. Saxton: Dynamic instability of the liquid crystal director. In: Contemp. Math. Vol. 100: Current Progress in Hyperbolic Systems (W. B. Lindquist, ed.). AMS, Providence, 1989, pp. 325–330.

    Google Scholar 

  30. L. Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Anal. Mech. Heriot-Watt Symposium. Research Notes in Math., Vol. 39, (R. J. Knops, ed.). Pitman Press, 1979.

  31. L. Tartar: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb., Sect. A 115 (1990), 193–230.

    MATH  MathSciNet  Google Scholar 

  32. Zhouping Xin, Ping Zhang: On the weak solutions to a shallow water equation. Comm. Pure. Appl. Math. LIII (2000), 1411–1433.

  33. L. C. Young: Lectures on the Calculus of Variations and Optimal Control Theory. Saunders, Philadelphia-London-Toronto, 1969.

    MATH  Google Scholar 

  34. Ping Zhang, Yuxi Zheng: On oscillations of an asymptotic equation of a nonlinear variational wave equation. Asymptotic Anal. 18 (1998), 307–327.

    MATH  MathSciNet  Google Scholar 

  35. Ping Zhang, Yuxi Zheng: Existence and uniqueness of solutions to an asymptotic equation arising from a variational wave equation with general data. Arch. Ration. Mech. Anal. 155 (2000), 49–83.

    Article  MATH  MathSciNet  Google Scholar 

  36. Ping Zhang, Yuxi Zheng: Rarefactive solutions to a nonlinear variational wave equation. Commun. Partial Differ. Equations 26 (2001), 381–419.

    Article  MATH  MathSciNet  Google Scholar 

  37. Ping Zhang, Yuxi Zheng: Singular and rarefactive solutions to a nonlinear variational wave equation. Chin Ann. Math., Ser. B 22 (2001), 159–170.

    Article  MATH  MathSciNet  Google Scholar 

  38. Ping Zhang, Yuxi Zheng: Weak solutions to nonlinear variational wave equation. Arch. Ration. Mech. Anal. 166 (2003), 303–319.

    Article  MATH  MathSciNet  Google Scholar 

  39. Ping Zhang, Yuxi Zheng: Weak solutions to a nonlinear variational wave equation with general data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 207–226.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Zorski, E. Infeld: New soliton equations for dipole chains. Phys. Rev. Lett. 68 (1992), 1180–1183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P. Weak solutions to a nonlinear variational wave equation and some related problems. Appl Math 51, 427–466 (2006). https://doi.org/10.1007/s10778-006-0111-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0111-2

Keywords

Navigation