Skip to main content
Log in

Magnon-Phonon-Photon Entanglement via the Magnetoelastic Coupling in a Magnomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present an efficient and experimentally feasible scheme for the generation of entanglement among photon, magnon and phonon by exploiting magnetoelastic interaction between magnonic and phononic modes. Our scheme is based on direct coupling between magnon and phonon modes whereas magnon and optical modes are indirectly coupled. Our numerical results show that the magnetoelastic coupling between magnon and phonon is significantly larger than the optomechanical coupling between photon and phonon. In addition to directly coupled modes entanglements, indirectly coupled bipartition also shows a strong correlation when we consider the magnon frequency to be much larger than the phonon frequency and magnon decay rate to be less than the cavity decay rate. Furthermore, we also obtained the robustness of entanglement, among all bipartitions, against thermal and environmental fluctuations. Moreover, we have characterized tripartite entanglement which shows the existence of a strong correlation among magnon, phonon, and photon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used during this study are available within the article.

References

  1. Mooney, G.J., Hill, C.D., Hollenberg, L.C.L.: Entanglement in a 20-qubit superconducting quantum computer. Scientific Reports 9, 13465 (2019)

    Article  ADS  Google Scholar 

  2. Waseem, M., Ahmed, R., Irfan, M., Qamar, S.: Three-qubit Groverâs algorithm using superconducting quantum interference devices in cavity-QED. Quant. Inf. Proces. 12, 3649 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Castro, C., Araújo, M.R., Cruz, C.: Entanglement dynamics of a dc SQUID interacting with a single-mode radiation field. Phys. Scr. 96, 105101 (2021)

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  5. Sohail, A., Ahmed, R., Yu, C.S.: Switchable and enhanced absorption via qubit-mechanical nonlinear interaction in a hybrid optomechanical system. Int. J. Theor. Phys. 60, 739 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sohail, A., Ahmed, R., Yu, C.S.: Tunable optomechanically induced transparency and fano resonance in optomechanical system with levitated nanosphere. Int. J. Theor. Phys. 57, 2814 (2018)

    Article  MATH  Google Scholar 

  7. Singh, S.K., Asjad, M., Raymond Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 47 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  8. Sohail, A., Ahmed, R., Yu, C.S., Munir, T., Fakhar-e-alam: Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Phys. Scr. 95, 035108 (2020)

    Article  ADS  Google Scholar 

  9. Sohail, A., Ahmed, R., Yu, C.S., Munir, T.: Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Phys. Scr. 95, 045105 (2020)

    Article  ADS  Google Scholar 

  10. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon-Photon-Phonon Entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  11. Li, J., Gröblacher, S.: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6, 024005 (2021)

    Article  ADS  Google Scholar 

  12. Su, Y.C., Wu S.T.: Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing. Phys. Rev. A 96(3), 032327 (2017)

    Article  ADS  Google Scholar 

  13. Ahmed, R., Qamar, S.: Optomechanical entanglement via non-degenerate parametric interactions. Phys. Scr. 92, 105101 (2017)

    Article  ADS  Google Scholar 

  14. Purdy, T.P., Yu, P.L., Peterson, R.W., Kampel, N.S., Regal, C.A.: Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)

    Google Scholar 

  15. Ul-Islam, R, Ikram, M., Ahmed, R., Khosa, A.H., Saif, F.: Atomic state teleportation. internal to external degrees of freedom. J. Mod. Opt. 56(7), 875–880 (2009)

    Article  MATH  ADS  Google Scholar 

  16. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Mario, K., Pan, J.-W.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  17. Bruß, Ď., Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen, A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93(21), 210501 (2004)

    Article  ADS  Google Scholar 

  18. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  19. Hensen, B., Bernien, H., Reiserer, A., Kalb, N., Blok, M.S.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  20. Shalm, L.K., Meyer-Scott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  21. Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Gross, R., Goennenwein, S.T.B.: High Cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  22. Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum Limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  23. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Strongly Coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  24. Vashahri-Ghamsari, S., Lin, Q., He, B., Xiao, M.: Magnomechanical phonon laser beyond the steady state. Phys. Rev. A 104, 033511 (2021)

    Article  ADS  Google Scholar 

  25. Sarma, B., Busch, T., Twamley, J.: Cavity magnomechanical storage and retrieval of quantum states. New J. Phys. 23, 043041 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  26. Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG magnonics. J. Phys. D: Appl. Phys. 43, 264002 (2010)

    Article  ADS  Google Scholar 

  27. Qin, H., Both, G.-J., Hämäläinen, S.J., Yao, L., van Dijken, S.: Low-loss YIG-based magnonic crystals with large tunable bandgaps. Nat. Commun. 9, 5445 (2018)

    Article  ADS  Google Scholar 

  28. Jie, L., Gröblacher, S.: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6, 024005 (2021)

    Article  ADS  Google Scholar 

  29. Lachance Quirion, D., Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Nakamura, Y.: Resolving quanta of collective spin excitation in a millimeter-sized ferromagnet. Sci. Adv. 3, e1603150 (2017)

    Article  ADS  Google Scholar 

  30. Hisatomi, R., Osada, A., Tabuchi, Y., Ishikawa, T., Noguchi, A., Yamazaki, R., Usami, K., Nakamura, Y.: Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016)

    Article  ADS  Google Scholar 

  31. Xiao, Y., Yan, X.H., Zhang, Y., Grigoryan, V.L., Hu, C.M., Guo, H., Xia, K.: Magnon dark mode of an antiferromagnetic insulator in a microwave cavity. Phys. Rev. B 99, 094407 (2019)

    Article  ADS  Google Scholar 

  32. Zhang, X., Zou, C.-L., Zhu, N., Marquardt, F., Jiang, L., Tang, H.X.: Magnon dark modes and gradient memory. Nat. Commun. 6, 8914 (2015)

    Article  ADS  Google Scholar 

  33. Ullah, K., Tahir Naseem, M., Özgür, E.M.: Tunable multiwindow magnomechanically induced transparency, Fano resonances, and slow-to-fast light conversion. Phys. Rev. A 102, 033721 (2020)

    Article  ADS  Google Scholar 

  34. Ding, M.-S., Xin, X.-X., Qin, S.-Y., Li, C.: Enhanced entanglement and steering in PT-symmetric cavity magnomechanics. Opt. Commun. 490, 126903 (2021)

    Article  Google Scholar 

  35. Lachance-Quirion, D., Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Nakamura, Y.: . Sci. Adv. 3, e1603150 (2017)

    Article  ADS  Google Scholar 

  36. Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99(R), 021801 (2019)

    Article  ADS  Google Scholar 

  37. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  38. Li, J, Zhu, S.Y., Agarwal, G.S.: Magnon-Photon-Phonon Entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  39. Kittel, C.: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Zhang, X, Zou, CL, Jiang, L, Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  41. Gonzalez-Ballestero, C, Hümmer, D., Gieseler, J., Romero-Isart, O.: Theory of quantum acoustomagnonics and acoustomechanics with a micromagnet. Phys. Rev. B 101, 125404 (2020)

    Article  ADS  Google Scholar 

  42. Huebl, H., et al.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  43. Tabuchi, Y, Ishino, S, Ishikawa, T, Yamazaki, R, Usami, K, Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  44. Bai, L., Harder, M., Chen, Y.P., Fan, X., Xiao, J.Q., Hu, C.M.: Spin pumping in electrodynamically coupled Magnon-Photon systems. Phys. Rev. Lett. 114, 227201 (2015)

    Article  ADS  Google Scholar 

  45. Goryachev, M, Farr, W.G., Creedon, D.L., Fan, Y, Kostylev, M, Tobar, M.E.: High cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014)

    Article  ADS  Google Scholar 

  46. See Supplemental Material at https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.121.203601/SuppMat.pdf (https://doi.org/10.1103/PhysRevLett.121.203601).

  47. Simon, R.: Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  48. Holstein, T, Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  MATH  ADS  Google Scholar 

  49. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  50. Parks, P.C., Hahn, V.: Stability Theory. Prentice Hall, New York (1993)

    MATH  Google Scholar 

  51. Sohail, A., Rana, M., Ikram, S., Munir, T., Hussain, T., Ahmed, R., Yu, C.S.: Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Inf. Process 372, 19 (2020)

    MathSciNet  Google Scholar 

  52. Eisert, J.: Entanglement in Quantum Information Theory. Ph.D. Thesis, University of Potsdam, Potsdam, Germany (2001)

  53. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  54. Plenio, M.B.: Logarithmic negativity: A full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2008)

    Article  Google Scholar 

  55. Adesso, G., Illuminati, F.: Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A 40, 7821 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Adesso, G., Illuminati, F.: Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8, 15 (2006)

    Article  ADS  Google Scholar 

  57. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  58. Sohail, A., Ahmed, R., Zainab, R., Yu, C.S.: Enhanced entanglement and quantum steering of directly and indirectly coupled modes in a magnomechanical system. Phys. Scr. 97, 075102 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Sohail.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, A., Ahmed, R., Shahzad, A. et al. Magnon-Phonon-Photon Entanglement via the Magnetoelastic Coupling in a Magnomechanical System. Int J Theor Phys 61, 174 (2022). https://doi.org/10.1007/s10773-022-05152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05152-4

Keywords

Navigation