Skip to main content
Log in

Quasi-Deterministic Secure Quantum Communication Using Non-maximally Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum communication in general helps deter potential eavesdropping in the course of transmission of bits to enable secure communication between two or more parties. In this paper, we propose a novel quasi-deterministic secure quantum communication scheme using non-maximally entangled states. The proposed scheme follows a simple procedure, and cases where the entanglement required can be significantly reduced to carry out the protocol successfully are discussed. Long sequences or the whole sequence of data can be sent after error checking for a potential eavesdropper. The maximum qubit efficiency of the proposed protocol is found to be 33.333%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  2. Fox, M.: Quantum optics: an introduction, vol. 15, pp. 249–252. OUP Oxford, Oxford (2006)

    MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China. 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A. 359(5), 359–365 (2006)

    Article  ADS  Google Scholar 

  9. Xi-Han, L., Chun-Yan, L., Fu-Guo, D., Ping, Z., Yu-Jie, L., Hong-Yu, Z.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)

    Article  Google Scholar 

  10. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)

    Article  Google Scholar 

  11. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 1–8 (2019)

    Article  Google Scholar 

  12. Pan, D., Lin, Z., Wu, J., Sun, Z., Ruan, D., Yin, L., Long, G.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8, 1522–1531 (2020)

  13. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic bell states. Phys. Lett. A. 60(1), 157 (1999)

    Google Scholar 

  14. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  15. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A. 73(2), 022338 (2006)

    Article  ADS  Google Scholar 

  16. Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. arXiv preprint quant-ph/0606007 (2006)

  17. Chang, Y., Zhang, S.B., Yan, L.L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59, 2835–2840 (2014)

    Article  Google Scholar 

  18. Li, N., Li, J., Li, L.L., Wang, Z., Wang, T.: Deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad. Int. J. Theor. Phys. 55, 3579–3587 (2016)

    Article  MathSciNet  Google Scholar 

  19. Jiang, D., Chen, Y., Gu, X., Xie, L., Chen, L.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)

    Article  ADS  Google Scholar 

  20. Wang, X.W., Tang, S.Q., Yuan, J.B., Kuang, L.M.: Nonmaximally entangled states can be better for quantum correlation distribution and storage. Int. J. Theor. Phys. 54(5), 1461–1469 (2015)

    Article  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78(26), 5022–5025 (1997)

    Article  ADS  Google Scholar 

  22. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  23. White, A.G., James, D.F., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83(16), 3103–3107 (1999)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. Munro, W.J., Azuma, K., Tamaki, K., Nemoto, K.: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21(3), 78–90 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaraj, S., Balakrishnan, S. & Senthilnathan, K. Quasi-Deterministic Secure Quantum Communication Using Non-maximally Entangled States. Int J Theor Phys 60, 164–171 (2021). https://doi.org/10.1007/s10773-020-04672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04672-1

Keywords

Navigation