Skip to main content
Log in

No-Cloning Theorem, Kochen-Specker Theorem, and Quantum Measurement Theories

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The usual no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a cloning to be on the two quantum states. Here, we investigate a relation between the no-cloning theorem and the projective measurement theory that the results of measurements are either + 1 or − 1. We introduce the Kochen-Specker (KS) theorem with the projective measurement theory. We result in the fact that the two quantum states under consideration cannot be orthogonal if we avoid the KS contradiction. Thus the no-cloning theorem implies that the two quantum states under consideration are identical in that case. It turns out that the KS theorem with the projective measurement theory says a new version of the no-cloning theorem. Next, we investigate a relation between the no-cloning theorem and the measurement theory based on the truth values that the results of measurements are either + 1 or 0. We return to the usual no-cloning theorem that the two quantum states are identical or orthogonal in the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In probability theory, the law of large numbers is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed. The strong law of large numbers states that the sample average converges almost surely to the expected value.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Redhead, M.: Incompleteness, Nonlocality, and Realism, 2nd edn. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  3. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  4. Bell, J.S.: Physics 1, 195 (1964)

    Article  Google Scholar 

  5. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  6. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht (1989)

  7. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990)

    Article  ADS  Google Scholar 

  8. Pagonis, C., Redhead, M.L.G., Clifton, R.K.: Phys. Lett. A 155, 441 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Mermin, N.D.: Phys. Today 43(6), 9 (1990)

    Article  Google Scholar 

  10. Mermin, N.D.: Am. J. Phys. 58, 731 (1990)

    Article  ADS  Google Scholar 

  11. Peres, A.: Phys. Lett. A 151, 107 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Mermin, N.D.: Phys. Rev. Lett. 65, 3373 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 48, 3287 (2009)

    Article  Google Scholar 

  14. Nagata, K.: Phys. Rev. A 72, 012325 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 55, 5193 (2016)

    Article  Google Scholar 

  16. Nagata, K., Nakamura, T.: Int. J. Theor. Phys. 55, 3616 (2016)

    Article  Google Scholar 

  17. Wootters, W., Zurek, W.: Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  18. Dieks, D.: Phys. Lett. A 92, 271 (1982)

    Article  ADS  Google Scholar 

  19. Herbert, N.: Found. Phys. 12, 1171 (1982)

    Article  ADS  Google Scholar 

  20. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Rev. Mod. Phys. 77, 1225 (2005)

    Article  ADS  Google Scholar 

  21. Clapham, C., Nicholson, J.: The Concise Oxford Dictionary of Mathematics, 5th edn. Oxford University Press, London (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T., Farouk, A. et al. No-Cloning Theorem, Kochen-Specker Theorem, and Quantum Measurement Theories. Int J Theor Phys 58, 1845–1853 (2019). https://doi.org/10.1007/s10773-019-04078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04078-8

Keywords

Navigation