Skip to main content
Log in

The effect of hadronic rindler horizon on hadronization process

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this study by extending the recent suggested mechanisms to hadronization processes, the information loss for QCD matter in hadronic Rindler horizon is found. We notice that for all finite values of quark and gluon energies, all information from all hadronization processes experiences some degree of loss. Then the effect of hedonic Rindler horizon on three jet cross section is explored. It is found that the three jet cross section is rising at ycut = 0.0002 exhibits a turn-over at moderate value of ycut = 0.01 and then rapidly decreases as ycut increases. This model is consistent with OPAL data. Finally, different channels for producing Higgs boson near hadronic Rindler horizon are studied. It is shown that the cross section of Higgs boson produced via gluon fusion and quark interaction near a single Hadronic Rindler Horizon is much larger for higher center of mass energies. This is because an increase in the energy of hadronic Rindler horizon raises the temperature, thus intensifying the thermal radiation of QCD matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sepehri, A., Zomorrodian, M.E., Marjeneh, A.M., Eslami, P., Shoorvazi, S.: Can. J. Phys. 90(1), 25–37 (2012)

    Article  ADS  Google Scholar 

  2. Zomorrodian, M.E., Sepehri, A., Marjaneh, A.M.: Can. J. Phys. 88(11), 841–849 (2010)

    Article  ADS  Google Scholar 

  3. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. EPJ Web of Conferences 126, 02032 (2016), ICNFP 2015

  5. Castorina P., Kharzeev D., Satz H.: arXiv:0704.1426v2

  6. Castorina P., Grumiller D., Iorio A.: arXiv:0802.2286v1

  7. Gottesman, D., Preskill, J.: J. High Energy Phys JHEP0403, 026 (2004)

    Article  ADS  Google Scholar 

  8. Ghaffary, T.: Int. J. Theor. Phys. 56, 683–690 (2017). https://doi.org/10.1007/s10773-016-3210-9

    Article  Google Scholar 

  9. Zomorrodian, M.E., Sepehri, A., Ghaffary, T., Eslami, P.: Pramana J Phys, 76(1) (2011)

  10. Weinzierl, S.: J. High Energy Phys. 0906, 041 (2009)

    Article  ADS  Google Scholar 

  11. Landsberg, G.L.: Phys. Rev. Lett. 88, 181801 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chamblin, A., Cooper, F., Nayak, G.C.: Phys. Lett. B 672, 147–151 (2009)

    Article  ADS  Google Scholar 

  13. Nayak, G.C., Smith, J.: Phys. Rev. D 74, 014007 (2006)

    Article  ADS  Google Scholar 

  14. Chamblin, A., Cooper F., Nayak, G.C.: Phys. Rev. D 70, 075018 (2004)

    Article  ADS  Google Scholar 

  15. Beenakker, W., Hpker, R., Spira, M., Zerwas, P.M.: Nucl. Phys. B 492, 51 (1997)

    Article  ADS  Google Scholar 

  16. Bilic, N., Tolic, D.: Phys. Rev. D 91, 104025 (2015)

    Article  ADS  Google Scholar 

  17. Ahn, D.: Phys Rev. D 74, 084010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  19. Ahn, D., Moon, Y.H., Mann, R.B., Fuentes-Schuller, I.: JHEP0806:062 (2008)

  20. Zakharov, V.I., Merten, T.G., Verschelde, H.: EPJ Web conf 126 02032 (2016) ICNFP (2015)

  21. Itzykson, C., Zuber, F.-B.: Quantum field theory. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  22. Laschka A., Kaiser N., Weise W.: arXiv:1102.0945v2

  23. Tawfik, A.N., Yassin, H., Abo Elyazeed, E.R.: Int. J. Mod. Phys. E 26, 1750001 (2017)

    Article  ADS  Google Scholar 

  24. Ghaffary, T.: Eur. Phys. J. A 53, 20 (2017). https://doi.org/10.1140/epja/i2017-12206-9

    Article  ADS  Google Scholar 

  25. Boulware, D.G.: Phys. Rev. D 12, 350 (1975)

    Article  ADS  Google Scholar 

  26. Horowitz, G.T., Maldacena, J.: J. High Energy Phys. 2004, 008 (2004)

    Article  Google Scholar 

  27. OPAL Collaboration, Abbiendi, G., et al.: Eur. Phys. J. C 45, 547 (2006)

    Article  ADS  Google Scholar 

  28. Ghaffary, T.: Int. J. Geom. Methods Mod. Phys. 14(10), 1750139 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kidonakis, N.: Phys. Rev. D 77, 053008 (2008)

    Article  ADS  Google Scholar 

  30. Corda, C.: Ann. Phys. 353, 71 (2015)

    Article  ADS  Google Scholar 

  31. Zhang, B., Cai, Q., Zhan, M., You, L.: Int. J. Mod. Phys. D 22, 1341014 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tooraj Ghaffary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffary, T. The effect of hadronic rindler horizon on hadronization process. Int J Theor Phys 57, 3066–3080 (2018). https://doi.org/10.1007/s10773-018-3825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3825-0

Keywords

Navigation