Skip to main content
Log in

Masses and Mixing of Neutral Leptons in a Grand Unified E6 Model with Intermediate Pati-Salam Symmetry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A brief review of the assignment of elementary fermions and bosons to irreducible multiplets in grand unified \(E_{6}\) models is followed by a discussion of different, hierarchical symmetry breaking chains from \(E_{6}\) down to \(SU(3)_{C} \times U(1)_{EM}\). We concentrate here on a model with an intermediate Pati-Salam symmetry for which \((B-L)\) is conserved. In particular, the mass/mixing matrix of electrically neutral fermions (i.e.neutrinos) that would be derived from Yukawa couplings is constructed. The pattern of neutrino masses and some bounds on mixing parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We make the most economical Higgs multiplet assignment. Higher Higgs multiplets \(\{351\}\) and \(\{\bar {351}\}\) may also be considered, for example, to implement supersymmetry [30].

  2. The alternative symmetry breaking chain with intermediate \(SU(5)\) symmetry instead of the Pati-Salam symmetry leads to a mass matrix with the same non-vanishing entries as above except the entry \(M_{13} \sim (-1,-1,-2)\) that vanishes. This is the case considered in Rosner [36].

  3. Here and in what follows, lower case m’s correspond to “small” parameter values while the upper case M’s correspond to “large” ones [35]. All the mass parameters are assumed positive.

  4. It is interesting to note that these bounds are independent of \(M_{13}\). Then they would remain the same if the broken symmetry chain had an intermediate \(SU(5)\) instead.

References

  1. Georgi, H., Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  2. Georgi, H., Quinn, H.R., Weinberg, S.: Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33, 451 (1974)

    Article  ADS  Google Scholar 

  3. Gell-Mann, M., Ramond, P., Slansky, R.: Color embeddings charge assignments and proton stability in unified gauge theories. Rev. Mod. Phys. 50, 721 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  4. Langacker, P.: Grand united theories and proton decay. Phys. Rep. 72, 185 (1981)

    Article  ADS  Google Scholar 

  5. Pati, J.C.: Discovery of proton decay: A must for theory, a challenge for experiment. In: Diwan, N.V., Jung, C.K. (eds.) Next Generation of Nucleon Decay and Neutrino Detector (AIP, 2000) pp. 37–53

  6. Senjanovic, G.: Proton decay and grand unification. In: Nath, P., Alverson, G., Nelson, B. (eds.) 17th Int.Conf. on Supersymmetry and The Unification of Fundamental Interactions (AIP, 2003) pp. 131–141

  7. Georgi, H.: The state of the art-gauge theories. In: Wolfe, H.C., Carlson, C.E. (eds.) AIP Conference Proceedings. Vol. 23. No. 1 AIP (1975)

  8. Fritzsch, H., Minkowski, P.: Unified interactions of leptons and hadrons. Ann. Phys. 93, 193 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gürsey, F., Ramond, P., Sikivie, P.: A universal gauge theory model based on \(E_{6}\). Phys. Lett. B 69, 177 (1976)

    Article  Google Scholar 

  10. Shafi, Q.: E 6 as a unifying gauge symmetry. Phys. Lett. B 79, 301–303 (1978)

    Article  ADS  Google Scholar 

  11. Achiman, Y., Stech, B.: Quark-lepton symmetry and mass scales in an \(E_{6},\) unified gauge model. Phys. Lett B 77, 389 (1978)

    Article  ADS  Google Scholar 

  12. Barbieri, R., Nanopoulos, D.V.: An exceptional model for grand unification. Phys. Lett. B 91, 369–375 (1980)

    Article  ADS  Google Scholar 

  13. Gürsey, F., Serdaroǧlu, M.: Basic fermion masses and mixings in the \(E_{6}\) model. Lett. Nuo Cim. 21, 78 (1977)

    Google Scholar 

  14. Gürsey, F.: Symmetry breaking patterns in \(E_{6}\). In: Frampton, P.H., Georgi, H., Yıldız, A. (edss) The First Workshop on Grand Unification, pp. 39-55. Math. Scie. Press (1980)

  15. Gürsey, F., Serdaroğlu, M.: E 6 gauge field theory model revisited. Nuo. Cim. 65A, 337 (1981)

    Article  ADS  Google Scholar 

  16. Pati, J.C., Salam, A.: Lepton number as fourth color. Phys. Rev. D 109, 275 (1974)

    Article  ADS  Google Scholar 

  17. Mohapatra, N., Pati, J.C.: Natural left-right symmetry. Phys. Rev. D 11, 2558 (1975)

    Article  ADS  Google Scholar 

  18. Senjanovic, G., Mohapatra, R.N.: Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D 12, 1502 (1975)

    Article  ADS  Google Scholar 

  19. Pati, J.C., Rajpoot, S., Salam, A.: Neutral current phenomena within the left-right symmetric unified theory of quarks and leptons. Phys. Rev. D 17, 131 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ruegg, H., Schucker, T.: Masses for fermions in a unified gauge model based on \(E_{6}\). Nucl. Phys. B 161, 388–396 (1979)

    Article  ADS  Google Scholar 

  21. Georgi, H., Nanopoulos, D.V.: Masses and mixing in unified theories. Nucl. Phys. B 159, 16 (1979)

    Article  ADS  Google Scholar 

  22. Barbieri, R., Nanopoulos, D.V.: Hierarchical fermion masses from grand unification. Phys. Lett. B 95, 43–46 (1980)

    Article  ADS  Google Scholar 

  23. Weinberg, S.: Baryon-and lepton-nonconserving processes. Phys. Rev. Lett. 43, 1566 (1979)

    Article  ADS  Google Scholar 

  24. Mohapatra, R.N., Marshak, R.E.: Local B-L symmetry of electroweak interactions, Majorana neutrinos,and neutrino oscillations. Phys Rev. Lett. 44, 1316 (1980)

    Article  ADS  Google Scholar 

  25. Paschos, E., Sarkar, U., So, H.: Baryon and lepton number assignments in \(E_{6}\) models. Phys. Rev. D 52, 1701 (1995)

    Article  ADS  Google Scholar 

  26. Harada, J.: Hypercharge and baryon minus lepton number in \(E_{6}\). JHEP 0304, 011 (2003)

    Article  ADS  Google Scholar 

  27. Mohapatra, R.N.: From old symmetries to new symmetries: Quarks and leptons. Int. J. Mod. Phys. A 29, 1430066 (2014)

    Article  ADS  MATH  Google Scholar 

  28. Chamseddine, A.H., Connes, A., van Suijlekom, W. D.: Beyond the spectral standard model: Emergence of Pati-Salam unification. JHEP 1311, 132 (2013)

    Article  ADS  Google Scholar 

  29. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Grand unification in the spectral Pati-Salam model. JHEP 1511, 011 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Babu, K.S., Bajc, B., Susic̆, V.: A minimal supersymmetric \(E_{6}\) unified theory. JHEP 1505, 108 (2015)

    Article  ADS  Google Scholar 

  31. Feger, R., Kephart, T.W.: LieArt: A Mathematica application for Lie algebras and representation theory. Comp. Phys. Comm. 192, 166 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Slansky, R.: Group theory for unified model building. Phys. Rep. 79, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. Georgi, H.: Lie Algebras in Particle Physics. Westview Press (1999)

  34. Ramond, P.: Group Theory: A Physicist’s Survey. Cambridge U.P. (2010)

  35. Robinett, R.W., Rosner, J.L.: Mass scales in grand unified theories. Phys. Rev. D 26, 2396 (1982)

    Article  ADS  Google Scholar 

  36. Rosner, J.L.: Three sterile neutrinos in \(E_{6}\). Phys. Rev. D 90, 035005 (2014)

    Article  ADS  Google Scholar 

  37. Joglekar, A., Rosner, J.L.: Searching for signatures of \(E_{6}\). Phys. Rev. D 96, 015026 (2017)

    Article  ADS  Google Scholar 

  38. Drewes, M.: The phenomenology of right-handed neutrinos. Int. J. Mod. Phys. E 22, 1330019 (2013)

    Article  ADS  Google Scholar 

  39. Tosa, Y., Marshak, R.E.: Exotic fermions. Phys. Rev. D 32, 774 (1985)

    Article  ADS  Google Scholar 

  40. Rizzo, T.G.: Exotic fermions in \(E_{6}\) models and \(e+\gamma \). Phys. Rev. D 34, 2160 (1986)

    Article  ADS  Google Scholar 

  41. Rizzo, T.G.: Phenomenology of exotic particles in \(E_{6}\) theories. Phys. Rev. 34, 1438 (1986)

    ADS  Google Scholar 

  42. Feger, R.P., Kephart, T.W.: Grand unification and exotic fermions. Phys. Rev. D 92, 035005 (2015)

    Article  ADS  Google Scholar 

  43. Ciunti, G.: Light sterile neutrinos: Status and perspectives. Nucl. Phys. B 908, 336 (2016)

    Article  ADS  Google Scholar 

  44. Ma, E.: Neutrino masses in an extended gauge model with \(E_{6}\) particle content. Phys. Lett. B 380, 286 (1996)

    Article  ADS  Google Scholar 

  45. Nemevs̆ek, M., Senjanović, G., Tello, V.: Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model. Phys. Rev. Lett. 110, 151802 (2013)

    Article  ADS  Google Scholar 

  46. Ma, E.: Pathways to naturally small Dirac neutrino masses. Phys. Lett. B 764, 142 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. King, S.F., Luhn, C.: Neutrino masses and mixing with discrete symmetry. Rep. Prog. Phys. 76, 056201 (2013)

    Article  ADS  Google Scholar 

  48. Dreiner, H.K., Haber, H.E., Martin, S.P.: Two-component spinor techniques and Feynman rules for quantum field theories and supersymmetry. Phys. Rep. 494, 1 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cheng, Y., Kong, O.C.W.: Ambiguities and subtleties in fermion mass terms in practical quantum field theory. Ann. Phys. 348, 315 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Johnson, C., Horn, R.: Matrix Analysis. Cambridge U.P. (1985)

  51. Pati, J.C.: Advantages of unity with \(SU(4)\)-color: Reflections through neutrino oscillations, baryogenesis and proton decay. arXiv:1706.09531. [hep-ph]

  52. Harvey, J.A: Patterns of symmetry breaking in the exceptional groups. Nucl. Phys. B 163, 254 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  53. Nandi, S., Sarkar, U.: Solution to the neutrino mass problem in superstring \(E_{6}\) theory. Phys. Rev. Lett. 56, 564 (1986)

    Article  ADS  Google Scholar 

  54. Lüst, D, Theisen, S.: Exceptional groups in string theory. Int. J. Mod. Phys. A 4, 4513 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  55. Kakushadze, Z., Henry Tye, S.-H.: Classification of 3-family grand unification in string theory. I. The \(SO(10)\) and \(E_{6}\) models. Phys. Rev. D 55, 7878 (1997)

    Article  ADS  Google Scholar 

  56. Ito, M. et al.: E 6 grand unified theory with 3-generations from heterotic string theory. Phys. Rev. D 83, 091703(R) (2011)

    Article  ADS  Google Scholar 

  57. Davis, S.: The reduction of the exceptional groups of string theory and the standard model. Quant. Phys. Lett. 4, 1 (2015)

    ADS  Google Scholar 

  58. Gürsey, F.: Octonionic structures in particle physics. In: Beiglböck, W., Böhm, A., Takasuji, E. (eds.) Group Theoretical Methods in Physics Lecture Notes in Physics, vol. 94, p 508. Springer (1979)

  59. Dray, T., Manogue, C.A.: The Geometry of Octonions. World Scientific (2015)

  60. Biedenharn, L.C., Truini, P.: Exceptional groups and elementary particle structures. Physica A114, 257 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Kerner, R.: Ternary algebraic structures and their applications in physics. arXiv:math-ph/0011023

Download references

Acknowledgments

S.B. thanks Koç University for a Graduate Student Scholarship. We are grateful to Dr.Emre Mengi for discussions on matrix analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tekin Dereli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benli, S., Dereli, T. Masses and Mixing of Neutral Leptons in a Grand Unified E6 Model with Intermediate Pati-Salam Symmetry. Int J Theor Phys 57, 2343–2358 (2018). https://doi.org/10.1007/s10773-018-3757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3757-8

Keywords

Navigation