Skip to main content
Log in

QCA Gray Code Converter Circuits Using LTEx Methodology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Quantum-dot Cellular Automata (QCA) is the prominent paradigm of nanotechnology considered to continue the computation at deep sub-micron regime. The QCA realizations of several multilevel circuit of arithmetic logic unit have been introduced in the recent years. However, as high fan-in Binary to Gray (B2G) and Gray to Binary (G2B) Converters exist in the processor based architecture, no attention has been paid towards the QCA instantiation of the Gray Code Converters which are anticipated to be used in 8-bit, 16-bit, 32-bit or even more bit addressable machines of Gray Code Addressing schemes. In this work the two-input Layered T module is presented to exploit the operation of an Exclusive-OR Gate (namely LTEx module) as an elemental block. The “defect-tolerant analysis” of the two-input LTEx module has been analyzed to establish the scalability and reproducibility of the LTEx module in the complex circuits. The novel formulations exploiting the operability of the LTEx module have been proposed to instantiate area-delay efficient B2G and G2B Converters which can be exclusively used in Gray Code Addressing schemes. Moreover this work formulates the QCA design metrics such as O-Cost, Effective area, Delay and Cost α for the n-bit converter layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology (1993) 4, 49–57 (1993). https://doi.org/10.1088/0957-4484/4/1/004

    Article  ADS  Google Scholar 

  2. Tougaw, P., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 85, 1818–1825 (1994). https://doi.org/10.1063/1.356375

    Article  ADS  Google Scholar 

  3. Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proceedings of IEEE 85, 541–557 (1997). PII: S 0018-9219(97)02731-X

    Article  Google Scholar 

  4. Walus, K., Vetteth, A., Jullien, G.A., Dimitrov, V.S.: RAM Design Using quantum-dot cellular automata. Proceedings of the Nanotechnology Conference and Trade Show 2, 160–163 (2003)

    Google Scholar 

  5. Frost, S., Rodrigues, A.F., Janiszewski, A.W., Raush, R.K., Kogge, P.M.: Memory in Motion: A study of storage structures in QCA, First Workshop on Non-Silicon Computing (2002)

  6. Berzon, D., Fountain, T.J.: A memory design in QCA using the SQUARES formalism. In: Proceedings of 9th Great Lakes Symposium on VLSI, pp 166–169 (1999). https://doi.org/10.1109/GLSV.1999.757402

  7. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectronics Engineering 163, 140–150 (2016). https://doi.org/10.1016/j.mee.2016.06.009

    Article  Google Scholar 

  8. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley, New York (2005). ISBN: 978-0-471-64800-0

    Book  MATH  Google Scholar 

  9. Ahmed, F., Ahmed, P.Z., Mohiuddin Bhat, G.: Design and analysis of odd-even-parity generators and checkers using Quantum-dot Cellular Automata (QCA). In: 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 187–194 (2015)

  10. Ilanchezhian, P., Parvathi, R.M.S.: Nanotechnology based Effective Design Approach for Code Converter Circuits using QCA. Int. J. Comput. Appl. 69, 1–5 (2013). ISSN: 0975-8887

    Google Scholar 

  11. Iqbal, J., Khanday, F.A., Shah, N.A.: Efficient quantum dot cellular automata (QCA) implementation of code converters. Communications in Information Science and Management Engineering 3, 504–515 (2013)

    Google Scholar 

  12. Waje, M.G., Dakhole, P.K.: Design and Simulation of New XOR Gate and Code Converters using Quantum Dot Cellular Automata with reduced number of wire crossings. IEEE International Conference on Circuit Power and Computing Technologies, pp. 1245–1250 (2014). https://doi.org/10.1109/ICCPCT.2014.7054942

  13. Ahmed, F., Bhat, G.M.: Novel Code Converters Based on Quantum-dot Cellular Automata (QCA). International Journal of Science and Research 3, 364–371 (2014). Paper ID: 020131715

    Google Scholar 

  14. Beigh, M.R., Mustafa, M.: Design and simulation of efficient code converter circuits for Quantum-Dot cellular automata. Journal of Computation and Theoretical Nanoscience 11, 2564–2569 (2014). https://doi.org/10.1166/jctn.2014.3673

    Article  Google Scholar 

  15. Ahmad, F., Md, G., Bhat, P.Z., Ahmad, H.A., Khan, R.: Farooq, design of N-Bit code converter using Quantum-Dot cellular automata (QCA), advanced science. Engineering and Medicine 7, 1–8 (2015). https://doi.org/10.1166/asem.2015.1677

    Google Scholar 

  16. Rao, N.G., Srikanth, P.C., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-International Journal of Light Electron Optic, pp. 1–4 (2015). https://doi.org/10.1016/j.ijleo.2015.12.119

  17. Islam, S., Abdullah-al Shafi, Md., Bahar, A.N.: Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata. Journal of Today’s Ideas-Tomorrow’s Technologies 3, 145–160 (2015). https://doi.org/10.15415/jotitt.2015.32010

    Article  Google Scholar 

  18. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik-International Journal of Light Electron Optic 130, 981–989 (2016) https://doi.org/10.1016/j.ijleo.2016.11.087

    Article  Google Scholar 

  19. Abdullah-al Shafi, Md., Bahar, A.N.: Novel Binary to Gray Code Converters in QCA with Power Dissipation Analysis. International Journal of Multimedia and Ubiquitous Engineering 11, 379–396 (2016). https://doi.org/10.14257/ijmue.2016.11.8.38

    Article  Google Scholar 

  20. Mukherjee, C., Sukla, S.S., Basu, S.S., Chakraborty, R., De, D., Layered, T.: Full Adder using Quantum-dot Cellular Automata. In: IEEE International Conference on Electronics, Computing and Communication Technologies, pp. 1–6 (2015). https://doi.org/10.1109/CONECCT.2015.7383867

  21. QCADesigner, Available: www.atips.ca/projects/qcadesigner

  22. Liu, M., Lent, C.S.: Bennett and Landauer clocking in quantum-dot cellular automata. In: 10th International Workshop on Computational Electronics, pp. 120–121 (2004). https://doi.org/10.1109/IWCSE.2004.1407356

  23. Toth, G., Lent, C.S.: Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata. J. Appl. Phys. 85, 2977–2984 (1999). https://doi.org/10.1063/1.369063

    Article  ADS  Google Scholar 

  24. Lent, C.: Molecular electronics-bypassing the transistor paradigm. Science 288, 1597–1599 (2000). https://doi.org/10.1126/science.288.5471.1597

    Article  Google Scholar 

  25. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006). https://doi.org/10.1126/science.1120506

    Article  ADS  Google Scholar 

  26. Dilabio, G.A., Wolkow, R.A., Pitters, J.L., Piva, G.: Atomistic quantum dots,. USA patent, US 2015/006071 A1 (2015)

  27. Zhang, R., Walus, K., Wang, W., Julien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004). https://doi.org/10.1109/TNANO.2004.834177

    Article  ADS  Google Scholar 

  28. Sen, B., Sengupta, A., Dalui, M., Sikdar, B.K.: Design of Testable Universal Logic Gate Targeting Minimum Wire Crossings in QCA Logic Circuit. In: 13th Euromicro Conference on Digital Systems Design: Architectures, Methods and Tools, pp. 613–620 (2010). https://doi.org/10.1109/DSD.2010.114

  29. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test and logic synthesis of And-Or-Inverter (AOI) gate design for QCA implementation. IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 24, 1881–1893 (2005). https://doi.org/10.1109/TCAD.2005.852667

    Article  Google Scholar 

  30. Khanday, F.A., Kant, N.A., Bangi, Z.A., Shah, N.A., novel Universal, A: (FNZ) Gate in quantum cellular automata, international conference on multimedia. Signal Processing and Communication Technologies, pp. 255–259 (2013). https://doi.org/10.1109/MSPCT.2013.6782130

  31. Mukherjee, C., Roy, S.S., Panda, S., Maji, B.: T-Gate: Concept of partial polarization in Quantum dot Cellular Automata. In: 20th International Symposium on VLSI Design and Test. Paper ID: 47 (2016)

  32. Su, C., Tsui, C., Despain, A.M.: Reduce power consumption of a high performance processor through gray code addressing, CENG technical report, advanced computer architecture laboratory, university of southern california, Los Angeles, pp. 3–11 (1993)

  33. Mehta, H., Owens, R.M., Irwin, M.J.: Some issues in gray code addressing. In: Proceedings of the 6th Great Lake Symposium on VLSI, pp 178–181 (1996). https://doi.org/10.1109/GLS.1996.497616

  34. Kumar, D., Mitra, D., Bhattacharya, B.B.: On Fault-Tolerant Design of exclusive-OR Gates in QCA, Emerging Technologies. Available: arXiv:1612.02975 (2016)

  35. Moris Mano, M.: Computer System Architecture. Pearson Education India. ISBN-13: 978-8131700709 (2007)

  36. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with application to /dev/random. In: 12th Conference on Computer and Communication Security, pp 203–212 (2005)

  37. Lin, S., Costello, D.J. Jr.: Error Control Coding, Pearson Education India. ISBN-13: 978-8131734407 (2011)

  38. Mukherjee, C., Panda, S., Mukhopadhyay, A.K., Maji, B.: Synthesis of Standard Functions and Generic ex-OR Gate using Layered T Gate. International Journal of High Performance Systems Architecture 7(2), 87–97 (2017) https://doi.org/10.1504/IJHPSA.2017.10008112

    Article  Google Scholar 

  39. Sen, B., Nag, A., De, A., Sikdar, B.K.: Multilayer design of QCA multiplexer. Annual IEEE India Conference, pp. 1–6 (2013). https://doi.org/10.1109/INDICON.2013.6725909

  40. Tahoori, M. B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004). https://doi.org/10.1109/TNANO.2004.834169

    Article  ADS  Google Scholar 

  41. Sen, B., Agarwal, A., Nath, R.K., Mukherjee, R., Sikdar, B.K.: Efficient design of fault tolerant tiles in QCA. Annual IEEE India Conference, pp. 1–6 (2014). https://doi.org/10.1109/INDICON.2014.7030690

  42. Okazawa, J.: Storing data in a grey code system. USA Patent, US 6308249 B1 (2001)

  43. Bray, B.B.: The Intel Microprocessors, Pearson Education India. ISBN-13: 978-8131726228 (2008)

  44. Perri, S., Corsonello, P., Cocorullo, G.: Design of Efficient Binary Comparators in Quantum-dot Cellular Automata. IEEE Trans. Nanotechnol. 13 (2), 192–202 (2014). https://doi.org/10.1109/TNANO.2013.2295711

    Article  ADS  Google Scholar 

  45. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E. Jr.: Design Rules for Quantum-dot Cellular Automata. In: Proceedings of 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2361–2364 (2011). https://doi.org/10.1109/ISCAS.2011.5938077

  46. Chandra, J.S., Suresh, K., Ghosh, B.: Clocking scheme implementation for Multi-Layered quantum dot cellular automata design. Journal of Low Power Electronics 10(2), 272–278 (2014). https://doi.org/10.1166/jolpe.2014.1314

    Article  Google Scholar 

  47. Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. AIP J. Appl. Phys. 85(12), 8281–8286 (1999). https://doi.org/10.1063/1.370670

    Article  ADS  Google Scholar 

  48. Liu, W., Lu, L., O’Neil, M., Swartzlander, E.E.: A first step toward cost functions for Quantum-Dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014). https://doi.org/10.1109/TNANO.2014.2306754

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Debdatta Banerjee for her literary contribution in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiradeep Mukherjee.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1.51 MB)

(DOCX 27.7 KB)

(DOCX 13.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Panda, S., Mukhopadhyay, A.K. et al. QCA Gray Code Converter Circuits Using LTEx Methodology. Int J Theor Phys 57, 2068–2092 (2018). https://doi.org/10.1007/s10773-018-3732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3732-4

Keywords

Navigation