Skip to main content
Log in

Auxiliary Conformally Invariant Higher-Spin Field in de Sitter Space

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We employ de Sitter isometry to study a mixed symmetric rank-3 tensor field in de Sitter space by finding the field equation, solution and two-point function which are conformally invariant. It is proved that such a tensor field plays a key role in conformal theory of linear gravity (Binegar et al., Phys. Rev. D 27, 2249, 1983) . In de Sitter space from the group theoretical point of view this kind of tensor could associate with two unitary irreducible representations (UIR) of the de Sitter group (Takook et al., J.Math. Phys. 51, 032503, 2010), which one representation has a flat limit, namely, in zero curvature coincides to the UIR of Poincaré group, however, the second one which is named as auxiliary field, becomes significant in the study of conformal gravity in de Sitter background. We show that the rank-3 tensor solution can be written in terms of a massless minimally coupled scalar field and also the related two-point function is a function of a massless minimally coupled scalar two-point function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For simplicity, one can put H = 1.

References

  1. Binegar, B., Fronsdal, C., Heidenreich, W.: Phys. Rev. D 27, 2249 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Takook, M.V., Tanhayi, M.R., Fatemi, S.: J. Math. Phys. 51, 032503 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Linde, A.D.: Harwood Academic Publishers, Chur. PARTICLE PHYSICS AND INFLATIONARY COSMOLOGY (1990)

  4. Barut, A.O., Böhm, A.: J. Math. Phys. 11, 2938 (1970)

    Article  ADS  Google Scholar 

  5. Angelopoulos, E., Laoues, M.: Rev. Math. Phys. 10, 271 (1998)

    Article  MathSciNet  Google Scholar 

  6. Gazeau, J.P.: Lett. Math. Phys. 8, 507 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gazeau, J.P., Hans, M.: J. Math. Phys. 29, 2533 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dixmier, J.: Bull. Soc. Math. France 89, 9 (1961)

    MathSciNet  Google Scholar 

  9. Takahashi, B.: Bull. Soc. Math. France 91, 289 (1963)

    MathSciNet  Google Scholar 

  10. Levy-Nahas, M.: J. Math. Phys. 8, 1211 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bacry, H., Levy-Leblond, J.M.: J. Math. Phys. 9, 1605 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  12. This was first established for the Maxwell equations in: H. Bateman, Proc. London Math. Soc. 7, (1909) 70; E. Cunningham, Proc. London Math. Soc. 8, (1909) 77; for massless spin 1/2 in: P.A.M. Dirac, Ann. Math. 37, (1936) 429; and for any spin in: A. McLennan, Nuovo Cim. 3, (1956) 1360; J. S. Lomont, Nuovo Cim. 22, (1961) 673

  13. Dirac, P.A. M.: Ann. of Math. 36, 657 (1935)

    Article  MathSciNet  Google Scholar 

  14. Bekaert, X., Grigoriev, M.: Manifestly conformal descriptions and higher symmetries of Bosonic Singletons. SIGMA 6, 038 (2010). arXiv:hep-th/0907.3195

    MathSciNet  MATH  Google Scholar 

  15. Arvidsson, P., Marnelius, R.: Conformal theories including conformal gravity as gauge theories on the hypercone. arXiv:hep-th/0612060v1

  16. Mack, G., Salam, A.: Ann. Phys. 53, 174 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kastrup, H.A.: Phys. Rev. 150, 1189 (1964)

    Google Scholar 

  18. Preitschop, C.R., Vosiliev, M.A.: Nucl. Phys. B. 549, 450 (1999)

    Article  ADS  Google Scholar 

  19. Behroozi, S., Rouhani, S., Takook, M.V., Tanhayi, M.R.: Phys. Rev. D 74, 124014 (2006). arXiv:gr-qc/0512105

    Article  ADS  MathSciNet  Google Scholar 

  20. Dehghani, M., Rouhani, S., Takook, M.V., Tanhayi, M.R.: Phys. Rev. D 77, 064028 (2008). arXiv:0805.2227

    Article  ADS  MathSciNet  Google Scholar 

  21. Dehghan, S.R., Pejhan, H., Elmizadeh, M.: Eur. Phys. J. C 75, 119 (2015)

    Article  ADS  Google Scholar 

  22. Allen, B., Jacobson, T.: Comm. Math. Phys. 103, 669 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bros, J., Moschella, U.: Rev. Math. Phys. 8, 327 (1996)

    Article  MathSciNet  Google Scholar 

  24. Garidi, T., Gazeau, J.P., Rouhani, S., Takook, M.V.: J. Math. Phys. 49, 032501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Pejhan, H., Tanhayi, M.R., Takook, M.V.: Int. J. Theor. Phys. 49, 2263–2277 (2010)

    Article  MathSciNet  Google Scholar 

  26. Chernikov, N.A., Tagirov, E.A.: Ann. Inst. Henri Poincaré IX, 109 (1968)

    ADS  MathSciNet  Google Scholar 

  27. Takook, M.V., Pejhan, H., Tanhayi, M.R.: Eur. Phys. J. C 72, 2052 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Tanhayi.

Appendix A: Some useful relations

Appendix A: Some useful relations

In this appendix, some useful relations are given. The action of Casimir operators of de Sitter group Q 1 (vector Casimir operator), Q 2 and Q 3) (Casimir operator for the rank-2 and rank-3 tensor field respectively) can be written in the more explicit form as [27]

$$ Q_{1}K_{\alpha}=(Q_{0}-2)K_{\alpha}+2x_{\alpha}\partial\cdot{K}-2\partial_{\alpha} x\cdot{K}, $$
(A.1)
$$ Q_{2}\mathcal{ K}_{\alpha\beta}=(Q_{0}-6)\mathcal{ K}_{\alpha\beta}+2\mathcal{ S}x_{\alpha}\partial\cdot{\mathcal{ K}_{\beta}}-2\mathcal{ S}\partial_{\alpha} x\cdot{\mathcal{ K}_{\beta}}+2\eta_{\alpha\beta}\mathcal{ K}^{\prime}, $$
(A.2)

where \(\mathcal { K}^{\prime }=\mathcal { K}_{\alpha }^{\alpha }\).

$$\begin{array}{@{}rcl@{}} Q_{3}F_{\alpha\beta\gamma}&&=(Q_{0}-6) F_{\alpha\beta\gamma}+2 \left( \eta_{\alpha\beta} F_{..\gamma}+ \eta_{\alpha\gamma}F_{.\beta.}+ \eta_{\beta\gamma} F_{\alpha..}\right)\\ &&+2\left( x_{\alpha}\Bar \partial\cdot {F_{.\beta\gamma}}+ x_{\beta}\Bar\partial\cdot{F_{\alpha.\gamma}}+x_{\gamma}\Bar \partial\cdot {F_{\alpha\beta.}}\right)\\ &&-2\left( \partial_{\alpha}x\cdot{F_{.\beta\gamma}}+\partial_{\beta}x\cdot{F_{\alpha.\gamma}}+\partial_{\gamma}x\cdot{F_{\alpha\beta.}}\right)-2\left( F_{\alpha\gamma\beta}+ F_{\beta\alpha\gamma}+F_{\gamma\beta\alpha} \right),\\ \end{array} $$
(A.3)

where F ..γ = F α α γ . After imposing mixed symmetry condition on F α β γ , above relation becomes

$$\begin{array}{@{}rcl@{}} Q_{3}F_{\alpha\beta\gamma}&&=(Q_{0}-4) F_{\alpha\beta\gamma}-2F_{\beta\gamma\alpha}-2F_{\gamma\alpha\beta}+2 \left( \eta_{\alpha\beta} F_{..\gamma}+ \eta_{\alpha\gamma}F_{.\beta.}+ \eta_{\beta\gamma} F_{\alpha..}\right)\\ &&+2\left( x_{\alpha}\Bar \partial\cdot {F_{.\beta\gamma}}+ x_{\beta}\Bar\partial\cdot{F_{\alpha.\gamma}}+x_{\gamma}\Bar \partial\cdot {F_{\alpha\beta.}}\right). \end{array} $$
(A.4)

To obtain the two-point function, the following identities are used

$$ \Bar\partial_{\alpha} f(\mathcal{ Z})=-(x^{\prime}\cdot{\theta_{\alpha}})\frac{df(\mathcal{ Z})}{d(\mathcal{ Z})}, $$
(A.5)
$$ \theta^{\alpha\beta}\theta^{\prime}_{\alpha\beta}=\theta\cdot\cdot{\theta^{\prime}}=3+\mathcal{ Z}^{2}, $$
(A.6)
$$ (x\cdot\theta^{\prime}_{\alpha^{\prime}})(x\cdot\theta^{\prime\alpha^{\prime}})=\mathcal{ Z}^{2}-1, $$
(A.7)
$$ (x\cdot{\theta^{\prime}_{\alpha}})(x^{\prime}\cdot{\theta^{\alpha}})=\mathcal{ Z}(1-\mathcal{ Z}^{2}), $$
(A.8)
$$ \Bar\partial_{\alpha}(x\cdot\theta^{\prime\beta^{\prime}})=\theta_{\alpha}\cdot\theta^{\prime\beta^{\prime}}, $$
(A.9)
$$ \Bar\partial_{\alpha}(x^{\prime}\cdot{\theta_{\beta}})=x_{\beta}(x^{\prime}\cdot{\theta_{\alpha}})-\mathcal{ Z}\theta_{\alpha\beta}, $$
(A.10)
$$ \Bar\partial_{\alpha}(\theta_{\beta}\cdot{\theta^{\prime}_{\beta^{\prime}}})=x_{\beta}(\theta_{\alpha}\cdot{\theta^{\prime}_{\beta^{\prime}}})+ \theta_{\alpha\beta}(x\cdot{\theta^{\prime}_{\beta^{\prime}}}), $$
(A.11)
$$ \theta^{\prime\beta}_{\alpha^{\prime}}(x^{\prime}\cdot{\theta_{\beta}})=-\mathcal{ Z}(x\cdot\theta^{\prime\alpha^{\prime}}), $$
(A.12)
$$ \theta^{\prime\gamma}_{\alpha^{\prime}}(\theta_{\gamma}\cdot\theta^{\prime}_{\beta^{\prime}})=\theta^{\prime}_{\alpha^{\prime}\beta^{\prime}}+(x\cdot\theta^{\prime\alpha^{\prime}})(x\cdot\theta^{\prime\beta^{\prime}}), $$
(A.13)
$$ Q_{0}f(\mathcal{ Z})=(1-\mathcal{ Z}^{2})\frac{d^{2}f(\mathcal{ Z})}{d\mathcal{ Z}^{2}}-4\mathcal{ Z}\frac{df(\mathcal{ Z})}{d(\mathcal{ Z})}. $$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmizadeh, M., Tanhayi, M.R. Auxiliary Conformally Invariant Higher-Spin Field in de Sitter Space. Int J Theor Phys 55, 1315–1323 (2016). https://doi.org/10.1007/s10773-015-2772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2772-2

Keywords

Navigation