Skip to main content
Log in

Nanospheres Containing Urea: Photothermic Properties

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present research, nanospheres of chitosan (CS), maltodextrin, and sodium tripolyphosphate (STPP), loaded with urea, were synthesized by using an ionic gelation technique. In the nanosphere synthesis was used a central composite experimental design, obtaining nanospheres with an average size of 275 ± 32 nm and 27.5 mV zeta potential. The nanospheres were characterized by their hydrodynamic diameter, polydispersity index, nitrogen content, and thermal properties such as thermal diffusivity (α), effusivity (e), and conductivity (k); also melting temperature was obtained by differential scanning calorimetry. The thermal properties of nanospheres show that the sample with the smallest size has a thermal diffusivity value of (14.4 ± 0.4) × 10−8 m2·s−1 and a thermal conductivity value of (6.4 ± 0.1) × 10−1 W·m−1·K−1, and the obtained melting temperature was 157 °C. Higher concentrations of CS increase the values of these thermal properties, probably because chitosan interacts ionically with STPP forming a reticular network due to the opposite charges of both molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. F. Ifa, Estimaciones globales de las emisiones gaseosas de NH3, NO y N2O provenientes de las tierras agrícolas, Roma, 2004. http://www.fao.org/3/a-y2780s.pdf. Accessed 14 Nov 2017

  2. L. Morgan, Temperatura nutriente, oxigênio e Pythium em hydroponics. Hydroponics homegrown inc. http://www.hydroponics.com. Accessed 01 Dec 2013

  3. A. Shaviv, in Water Resources Quality, ed. by H. Rubin, U. Shamir, P. Nachtnebel, J. Fürst (Springer, Berlin, 2002), pp. 3–15

    Chapter  Google Scholar 

  4. M.E. Trenkel, Controlled-Release and Stabilized Fertilizers in Agriculture (International Fertilizer Industry Association, Paris, 1997), pp. 41–44

    Google Scholar 

  5. B. Azeem, K. KuShaari, Z.B. Man, A. Basit, T.H. Thanh, J. Control Release 181, 11 (2014)

    Article  Google Scholar 

  6. S. Rodrigues, A.M.R. da Costa, A. Grenha, Carbohydr. Polym. 89, 282 (2012)

    Article  Google Scholar 

  7. A. Grenha, M.E. Gomes, M. Rodrigues, V.E. Santo, J.F. Mano, N.M. Neves, R.L. Reis, J. Biomed. Mater. Res. A 92, 1265 (2010)

    Google Scholar 

  8. S. Saloko, P. Darmadji, B. Setiaji, Y. Pranoto, Food. Biosci. 7, 71 (2014)

    Article  Google Scholar 

  9. I. Walinga, J.J. Van Der Lee, V.J.G. Houba, W. Van Vark, I. Novozamsky, Plant Analysis Manual (Springer, Dordrecht, 1995), pp. 7–45

    Google Scholar 

  10. I. Delgadillo, A. Cruz-Orea, H. Vargas, A. Calderón, J.J. Alvarado-Gil, L.C.M. Miranda, Opt. Eng. 36, 343 (1997)

    Article  ADS  Google Scholar 

  11. A. Garcia-Quiroz, S.A. Tomás, H. Vargas, A. Cruz-Orea, L. Veleva, J.J. Alvarado-Gil, L.C.M. Miranda, Instrum. Sci. Technol. 26, 241 (1998)

    Article  Google Scholar 

  12. N.F. Leite, N. Cella, H. Vargas, L.C.M. Miranda, J. Appl. Phys. 61, 3025 (1987)

    Article  ADS  Google Scholar 

  13. A.M. Mansanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 42, 4477 (1990)

    Article  ADS  Google Scholar 

  14. S.A. Tomás, A. Cruz-Orea, S. Stolik, R. Pedroza-Islas, D.L. Villagómez-Zavala, C. Gómez-Corona, Int. J. Thermophys. 25, 611 (2004)

    Article  ADS  Google Scholar 

  15. B. BriseñoTepepa, E. Marin, E. San Martín-Martinez, A. Cruz-Orea, Int. J. Thermophys. 30, 1591 (2009)

    Article  ADS  Google Scholar 

  16. J.J.A. Flores-Cuautle, A. Cruz-Orea, E. Suaste-Gómez, Ferroelectrics 386, 36 (2009)

    Article  Google Scholar 

  17. J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998)

    Article  ADS  Google Scholar 

  18. E. SanMartin-Martinez, M.A. Aguilar-Mendez, A. Cruz-Orea, A. García-Quiroz, Eur. Phys. J. Spec. Top. 153, 179 (2008)

    Article  Google Scholar 

  19. F.L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, C.K. Peng, Polymer 44, 6521 (2003)

    Article  Google Scholar 

  20. B. Boruah, P.M. Saikia, R.K. Dutta, J. Photochem. Photobiol. A Chem. 245, 18 (2012)

    Article  Google Scholar 

  21. J. Batalla Mayoral, A. Cuadros Moreno, E. San Martín-Martínez, Latin Am. J. Phys. Educ. 8, 4 (2014)

    Google Scholar 

Download references

Acknowledgments

F. Mallon Mercado is grateful for the scholarship program granted by the National Council of Sciences and Technology (CONACYT) and the Institutional Support for Research Incentive Grant (BEIFI). Authors also thank the partial financial support from CONACYT through the Project No. 241330. We also are grateful to Ing. Esther Ayala from Physics Department, CINVESTAV-IPN, for her technical support in developing the experiments of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. San Martín Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallon Mercado, F., San Martín Martinez, E., Aguilar-Méndez, M.A. et al. Nanospheres Containing Urea: Photothermic Properties. Int J Thermophys 39, 135 (2018). https://doi.org/10.1007/s10765-018-2454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2454-4

Keywords

Navigation