Skip to main content
Log in

Numerical Simulation of Photothermal Lens Spectrometry Models Relevant for Analytical Chemistry

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Three numerical models (radial symmetry two-dimensional and three-dimensional with cw and pulsed excitation) that correspond to the samples and schematics of dual-beam thermal lens measurements in solution most commonly used in chemical analysis are implemented by finite element analysis using COMSOL Multiphysics and geometry simulations using MATLAB. The comparison of the results obtained using the implemented models with the existing infinite two-dimensional model by Shen and Snook (J Appl Phys 73(10):5286, 1993. https://doi.org/10.1063/1.353761) under the same conditions showed their good agreement. The models were used to study the influence of the basic geometric and physical parameters of the sample. Conditions are found under which the boundary conditions for heat transfer and the geometrical parameters of the cell have the strongest and weakest effects on the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, F. Comeau, Biomed. Opt. Express 5, 2333 (2014). https://doi.org/10.1364/boe.5.002333

    Article  Google Scholar 

  2. C.L. Cassano, K. Mawatari, T. Kitamori, Z.H. Fan, Electrophoresis 35, 2279 (2014). https://doi.org/10.1002/elps.201300430

    Article  Google Scholar 

  3. M. Bagheri, I. Chae, D. Lee, S. Kim, T. Thundat, Sens. Actuators B 191, 765 (2014). https://doi.org/10.1016/j.snb.2013.10.078

    Article  Google Scholar 

  4. L. Vidovic, M. Milanic, B. Majaron, J. Biomed. Opt. 20, 017001 (2015). https://doi.org/10.1117/1.jbo.20.1.017001

    Article  ADS  Google Scholar 

  5. D.A. Nedosekin, M.A. Juratli, M. Sarimollaoglu, C.L. Moore, N.J. Rusch, M.S. Smeltzer, V.P. Zharov, E.I. Galanzha, J. Biophoton. 6, 523 (2013). https://doi.org/10.1002/jbio.201200242

    Article  Google Scholar 

  6. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley-Interscience, New York, 1996), p. 584

    Google Scholar 

  7. M.A. Proskurnin, D.S. Volkov, T.A. Gor’kova, S.N. Bendrysheva, A.P. Smirnova, D.A. Nedosekin, J. Anal. Chem. (Russ.) 70(3), 249 (2015). https://doi.org/10.1134/s1061934815030168

    Article  Google Scholar 

  8. M. Fischer, J. Georges, Anal. Chim. Acta 334, 337 (1996). https://doi.org/10.1016/s0003-2670(96)00344-3

    Article  Google Scholar 

  9. L.C. Malacarne, N.G.C. Astrath, G.V.B. Lukasievicz, E.K. Lenzi, M.L. Baesso, S.E. Bialkowski, Appl. Spectrosc. 65, 99 (2011). https://doi.org/10.1366/10-06096

    Article  ADS  Google Scholar 

  10. H. Cabrera, E. Sira, K. Rahn, M. Garcia-Sucre, Appl. Phys. Lett. 94, 051103 (2009). https://doi.org/10.1063/1.3078287

    Article  ADS  Google Scholar 

  11. D.A. Nedosekin, M.A. Proskurnin, M.Y. Kononets, Appl. Opt. 44, 6296 (2005). https://doi.org/10.1364/ao.44.006296

    Article  ADS  Google Scholar 

  12. B. Li, S. Xiong, Y. Zhang, Appl. Phys. B 80, 527 (2005). https://doi.org/10.1007/s00340-005-1744-2

    Article  ADS  Google Scholar 

  13. R. Lausten, P. Balling, J. Opt. Soc. Am. B 20, 1479 (2003). https://doi.org/10.1364/josab.20.001479

    Article  ADS  Google Scholar 

  14. S.E. Bialkowski, Photochem. Photobiol. Sci. 2, 779 (2003). https://doi.org/10.1039/b301839c

    Article  Google Scholar 

  15. J.W. Fang, S.Y. Zhang, Appl. Phys. B 67, 633 (1998). https://doi.org/10.1007/s003400050558

    Article  ADS  Google Scholar 

  16. J. Shen, A.J. Soroka, R.D. Snook, J. Appl. Phys. 78, 700 (1995). https://doi.org/10.1063/1.360329

    Article  ADS  Google Scholar 

  17. J. Shen, M.L. Baesso, R.D. Snook, J. Appl. Phys. 75, 3738 (1994). https://doi.org/10.1063/1.356046

    Article  ADS  Google Scholar 

  18. G. Ramisramos, J.J.B. Baeza, E.F.S. Alfonso, Anal. Chim. Acta 296, 107 (1994). https://doi.org/10.1016/0003-2670(94)85155-7

    Article  Google Scholar 

  19. J. Shen, R.D. Snook, J. Appl. Phys. 73, 5286 (1993). https://doi.org/10.1063/1.353761

    Article  ADS  Google Scholar 

  20. D.W. Gutzman, C.H. Langford, Anal. Chim. Acta 283, 773 (1993). https://doi.org/10.1016/0003-2670(93)85292-r

    Article  Google Scholar 

  21. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  22. C.A. Carter, J.M. Harris, Appl. Opt. 23, 476 (1984)

    Article  ADS  Google Scholar 

  23. W.A. Weimer, N.J. Dovichi, J. Appl. Phys. 59, 225 (1986). https://doi.org/10.1063/1.336868

    Article  ADS  Google Scholar 

  24. M. Sabaeian, H. Nadgaran, J. Appl. Phys. 114, 133102 (2013). https://doi.org/10.1063/1.4824295

    Article  ADS  Google Scholar 

  25. X. Filip, M. Chirtoc, J. Pelzl, J. Optoelectron. Adv. Mater. 8, 1088 (2006)

    Google Scholar 

  26. G. Kalogiannakis, D. Van Hemelrijck, Rev. Sci. Instrum. 74, 462 (2003). https://doi.org/10.1063/1.1517738

    Article  ADS  Google Scholar 

  27. H. Kobayashi, M. Kubo, T. Tsukada, M. Hozawa, Int. J. Heat Mass Transf. 45, 865 (2002). https://doi.org/10.1016/s0017-9310(01)00156-9

    Article  Google Scholar 

  28. O.O. Dada, S.E. Bialkowski, Appl. Spectrosc. 62, 1326 (2008)

    Article  ADS  Google Scholar 

  29. O.O. Dada, S.E. Bialkowski, Appl. Spectrosc. 62, 1336 (2008)

    Article  ADS  Google Scholar 

  30. M.T. Demko, S.R. Hostler, A.R. Abramson, Rev. Sci. Instrum. 79, 044902 (2008). https://doi.org/10.1063/1.2912943

    Article  ADS  Google Scholar 

  31. J. Bodzenta, A. Kaźmierczak-Bałata, R. Bukowski, M. Nowak, B. Solecka, Int. J. Thermophys. 38, 93 (2017). https://doi.org/10.1007/s10765-017-2219-5

    Article  ADS  Google Scholar 

  32. W.P. Adamczyk, R.A. Białecki, T. Kruczek, Appl. Math. Model. 40, 3410 (2016). https://doi.org/10.1016/j.apm.2015.10.028

    Article  Google Scholar 

  33. P. Suter, T. Graf, J. Appl. Phys. 103, 033509 (2008). https://doi.org/10.1063/1.2837830

    Article  ADS  Google Scholar 

  34. N.G.C. Astrath, L.C. Malacarne, V.S. Zanuto, M.P. Belancon, R.S. Mendes, M.L. Baesso, C. Jacinto, J. Opt. Soc. Am. B 28, 1735 (2011)

    Article  ADS  Google Scholar 

  35. M.P. Belancon, L.C. Malacarne, P.R.B. Pedreira, A.N. Medina, M.L. Baesso, A.M. Farias, M.J. Barbosa, N.G.C. Astrath, J. Shen, Thermal mirror and thermal lens techniques for semitransparent material characterization, in 15th International Conference on Photoacoustic and Photothermal Phenomena, ed. by C. Glorieux, J. Thoen (2010)

  36. O.A. Capeloto, G.V.B. Lukasievicz, V.S. Zanuto, L.S. Herculano, N.E. Souza Filho, A. Novatski, L.C. Malacarne, S.E. Bialkowski, M.L. Baesso, N.G.C. Astrath, Appl. Opt. 53, 7985 (2014). https://doi.org/10.1364/ao.53.007985

    Article  ADS  Google Scholar 

  37. R. Anraku, K. Mawatari, M. Tokeshi, M. Nara, T. Asai, A. Hattori, T. Kitamori, Electrophoresis 29, 1895 (2008). https://doi.org/10.1002/elps.200700571

    Article  Google Scholar 

  38. M. Liu, D. Korte, M. Franko, J. Appl. Phys. 111, 033109 (2012). https://doi.org/10.1063/1.3682481

    Article  ADS  Google Scholar 

  39. M. Liu, M. Franko, Theoretical analysis for sensitivity enhancement in broad-band thermal lens microscope, in Frontiers of Manufacturing Science and Measuring Technology Ii, Pts 1 and 2, ed. by W.P. Sung, J.C.M. Kao, R. Chen (2012), pp. 1480–1483

  40. M. Martelanc, L. Žiberna, S. Passamonti, M. Franko, Talanta 154, 92 (2016). https://doi.org/10.1016/j.talanta.2016.03.053

    Article  Google Scholar 

  41. M.Q. Liu, S. Malovrh, M. Franko, Anal. Methods 8, 5053 (2016). https://doi.org/10.1039/c6ay00932h

    Article  Google Scholar 

  42. D. Bicanic, G. Mocnik, M. Franko, H.A.G. Niederlander, P. van de Bovenkamp, J. Cozijnsen, Instrum. Sci. Technol. 34, 129 (2006). https://doi.org/10.1080/10739140500374146

    Article  Google Scholar 

  43. D.A. Nedosekin, E.I. Galanzha, S. Ayyadevara, R.J.S. Reis, V.P. Zharov, Biophys. J. 102, 1235 (2012). https://doi.org/10.1016/j.bpj.2012.02.012

    Article  Google Scholar 

  44. M. Nestoros, M. Mourouti, N.C. Papanicolaou, C. Christofides, Optoelectron. Adv. Mater. 5, 505 (2011)

    Google Scholar 

  45. F. Kitagawa, Y. Akimoto, K. Otsuka, J. Chromatogr. A 1216, 2943 (2009). https://doi.org/10.1016/j.chroma.2008.08.024

    Article  Google Scholar 

  46. T. Radovanović, M. Liu, P. Likar, M. Klemenc, M. Franko, Int. J. Thermophys. 36, 932 (2015). https://doi.org/10.1007/s10765-014-1699-9

    Article  ADS  Google Scholar 

  47. M. Martelanc, L. Žiberna, S. Passamonti, M. Franko, Anal. Chim. Acta 809, 174 (2014). https://doi.org/10.1016/j.aca.2013.11.041

    Article  Google Scholar 

  48. R.D. Snook, R.D. Lowe, Analyst 120, 2051 (1995). https://doi.org/10.1039/an9952002051

    Article  ADS  Google Scholar 

  49. M.A. Proskurnin, D.S. Volkov, T.A. Gor’kova, S.N. Bendrysheva, A.P. Smirnova, D.A. Nedosekin, J. Anal. Chem. (Russ.) 70, 249 (2015). https://doi.org/10.1134/s1061934815030168

    Article  Google Scholar 

  50. M.A. Proskurnin, 11—Photothermal spectroscopy, in Laser Spectroscopy for Sensing, ed. by M. Baudelet (Woodhead Publishing, Cambridge, 2014), pp. 313–361

    Chapter  Google Scholar 

  51. M.A. Proskurnin, V.V. Kuznetsova, Anal. Chim. Acta 418, 101 (2000). https://doi.org/10.1016/s0003-2670(00)00949-1

    Article  Google Scholar 

  52. M.A. Proskurnin, A.G. Abroskin, J. Anal. Chem. (Russ.) 54, 401 (1999)

    Google Scholar 

  53. A.A. Schilt, Analytical Application of 1,10-Phenanthroline and Related Compounds (Pergamon, Oxford, 1969), p. 193

    Google Scholar 

  54. V.V. Chernysh, M.Y. Kononets, M.A. Proskurnin, S.V. Pakhomova, V.V. Komissarov, A.I. Zatsman, Fresenius J. Anal. Chem. 369, 535 (2001). https://doi.org/10.1007/s002160100703

    Article  Google Scholar 

  55. L.C. Malacarne, N.G.C. Astrath, P.R.B. Pedreira, R.S. Mendes, M.L. Baesso, P.R. Joshi, S.E. Bialkowski, J. Appl. Phys. 107, 053104 (2010). https://doi.org/10.1063/1.3309762

    Article  ADS  Google Scholar 

  56. M. Terazima, N. Hirota, S.E. Braslavsky, A. Mandelis, S.E. Bialkowski, G.J. Diebold, R.J.D. Miller, D. Fournier, R.A. Palmer, A. Tam, Pure Appl. Chem. 76, 1083 (2004). https://doi.org/10.1351/pac200476061083

    Article  Google Scholar 

  57. A. Chartier, S. Bialkowski, Appl. Spectrosc. 55, 84 (2001). https://doi.org/10.1366/0003702011951290

    Article  ADS  Google Scholar 

  58. S.E. Bialkowski, TrAC Trends Anal. Chem. 17, 520 (1998). https://doi.org/10.1016/s0165-9936(98)00045-4

    Article  Google Scholar 

  59. R.D. Snook, Analyst 125, 45 (1999). https://doi.org/10.1039/a908809a

    Article  ADS  Google Scholar 

  60. R. Snook, Chem. Soc. Rev. 26, 319 (1997). https://doi.org/10.1039/cs9972600319

    Article  Google Scholar 

  61. S.E. Bialkowski, Isr. J. Chem. 38, 159 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The Russian Foundation for Basic Research, Grants Nos. 16–03–01089 A, 16–53–50027 YaF_a, and 16–33–60147 mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Proskurnin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyrko, E., Volkov, D.S. & Proskurnin, M.A. Numerical Simulation of Photothermal Lens Spectrometry Models Relevant for Analytical Chemistry. Int J Thermophys 39, 117 (2018). https://doi.org/10.1007/s10765-018-2433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2433-9

Keywords

Navigation