Skip to main content

Advertisement

Log in

Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent–Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure–high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.L. Hartmann, Global Physical Climatology (Elsevier, Amsterdam, 2016)

    Google Scholar 

  2. A.L. Kohl, R.B. Nielsen, Gas Purification (Elsevier Gulf, Houston, 1997)

    Google Scholar 

  3. D. Aaron, C. Tsouris, Sep. Sci. Technol. 40, 1–3 (2005)

    Article  Google Scholar 

  4. H. Suleman, A.S. Maulud, Z. Man, Rev. Chem. Eng. 31, 6 (2015)

    Article  Google Scholar 

  5. H. Bai, A.C. Yeh, Ind. Eng. Chem. Res. 36, 6 (1997). doi:10.1021/ie960748j

    Google Scholar 

  6. H. Thee, K.H. Smith, G. da Silva, S.E. Kentish, G.W. Stevens, Chem. Eng. J. 181, 694 (2012)

    Article  Google Scholar 

  7. G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder, M. Attalla, Environ. Sci. Technol. 43, 16 (2009)

    Article  Google Scholar 

  8. E. Sanchez-Fernandez, F. de Miguel Mercader, K. Misiak, L. van der Ham, M. Linders, E. Goetheer, Energy Proced. 37, 1160 (2013)

  9. H. Suleman, A.S. Maulud, Z. Man, Neural Comput. Appl. (2016). doi:10.1007/s00521-016-2213-z

    Google Scholar 

  10. R.H. Weiland, T. Chakravarty, A.E. Mather, Ind. Eng. Chem. Res. 32, 7 (1993)

    Google Scholar 

  11. O.F. Dawodu, A. Meisen, J. Chem. Eng. Data 39, 3 (1994)

    Article  Google Scholar 

  12. F.Y. Jou, A.E. Mather, F.D. Otto, Can. J. Chem. Eng. 73, 1 (1995)

    Article  Google Scholar 

  13. J.D. Lawson, A. Garst, J. Chem. Eng. Data 21, 1 (1976)

    Article  Google Scholar 

  14. J.I. Lee, F.D. Otto, A.E. Mather, J. Appl. Chem. Biotechnol. 26, 1 (1976)

    Google Scholar 

  15. J.I. Lee, F.D. Otto, A.E. Mather, Can. J. Chem. Eng. 54, 3 (1976). doi:10.1002/cjce.5450540316

    Article  Google Scholar 

  16. J. Lee, F.D. Otto, A.E. Mather, Can. J. Chem. Eng. 52, 6 (1974)

    Google Scholar 

  17. J.I. Lee, F.D. Otto, A.E. Mather, J. Chem. Eng. Data 20, 2 (1975)

    Article  Google Scholar 

  18. K.P. Shen, M.H. Li, J. Chem. Eng. Data 37, 1 (1992)

    Article  Google Scholar 

  19. J.I. Lee, F.D. Otto, A.E. Mather, J. Chem. Eng. Data 17, 4 (1972)

    Article  Google Scholar 

  20. J. Lee, F. Otto, A. Mather, Can. J. Chem. Eng. 52, 1 (1974)

    Article  Google Scholar 

  21. R. Sidi-Boumedine, S. Horstmann, K. Fischer, E. Provost, W. Fürst, J. Gmehling, Fluid Phase Equilib. 218, 1 (2004)

    Article  Google Scholar 

  22. F.Y. Jou, A.E. Mather, F.D. Otto, Ind. Eng. Chem. Process Des. Dev. 21, 4 (1982)

    Article  Google Scholar 

  23. Á.P.-S. Kamps, A. Balaban, M. Jödecke, G. Kuranov, N.A. Smirnova, G. Maurer, Ind. Eng. Chem. Res. 40, 2 (2001)

    Article  Google Scholar 

  24. G. Kuranov, B. Rumpf, N.A. Smirnova, G. Maurer, Ind. Eng. Chem. Res. 35, 6 (1996)

    Article  Google Scholar 

  25. R.J. Macgregor, A.E. Mather, Can. J. Chem. Eng. 69, 6 (1991)

    Article  Google Scholar 

  26. S. Ma’mun, R. Nilsen, H.F. Svendsen, O. Juliussen, J. Chem. Eng. Data 50, 2 (2005)

    Google Scholar 

  27. C. Mathonat, V. Majer, A. Mather, J.-P. Grolier, Fluid Phase Equilib. 140, 1 (1997)

    Article  Google Scholar 

  28. D. Silkenbäumer, B. Rumpf, R.N. Lichtenthaler, Ind. Eng. Chem. Res. 37, 8 (1998)

    Article  Google Scholar 

  29. S.K. Dash, A. Samanta, A. Nath Samanta, S.S. Bandyopadhyay, Chem. Eng. Sci. 66, 14 (2011)

    Article  Google Scholar 

  30. A.M. Shariff, G. Murshid, K. Lau, M.A. Bustam, F. Ahamd, Int. Scholar. Sci. Res. Innov. 5, 12 (2011)

    Google Scholar 

  31. S. Kadiwala, A.V. Rayer, A. Henni, Fluid Phase Equilib. 292, 1–2 (2010)

    Article  Google Scholar 

  32. Á.P.-S. Kamps, J. Xia, G. Maurer, AIChE J. 49, 10 (2003). doi:10.1002/aic.690491019

    Article  Google Scholar 

  33. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 6 (1996)

    Article  Google Scholar 

  34. H. Suleman, A.S. Maulud, Z. Man, J. Solut. Chem. (2016). doi:10.1007/s10953-016-0453-2

    Google Scholar 

  35. H. Suleman, A.S. Maulud, Z. Man, Appl. Mech. Mater. 625, 541 (2014)

    Article  Google Scholar 

  36. M. Haji-Sulaiman, M. Aroua, A. Benamor, Chem. Eng. Res. Des. 76, 8 (1998)

    Article  Google Scholar 

  37. A. Vrachnos, E. Voutsas, K. Magoulas, A. Lygeros, Ind. Eng. Chem. Res. 43, 11 (2004)

    Article  Google Scholar 

  38. C.S. Ume, M.C. Ozturk, E. Alper, Chem. Eng. Technol. 35, 3 (2012). doi:10.1002/ceat.201100394

    Article  Google Scholar 

  39. H.-B. Liu, C.-F. Zhang, G.-W. Xu, Ind. Eng. Chem. Res. 38, 10 (1999)

    Google Scholar 

  40. B.K. Mondal, S.S. Bandyopadhyay, A.N. Samanta, Int. J. Greenh. Gas Control 36, 153 (2015)

    Article  Google Scholar 

  41. H. Suleman, Q. Nasir, A.S. Maulud, Z. Man, Chem. Eng. Trans. 45, 589 (2015)

    Google Scholar 

  42. T. Edwards, G. Maurer, J. Newman, J. Prausnitz, AIChE J. 24, 6 (1978)

    Article  Google Scholar 

  43. A. Aboudheir, P. Tontiwachwuthikul, A. Chakma, R. Idem, Chem. Eng. Sci. 58, 23 (2003)

    Article  Google Scholar 

  44. M. Haji-Sulaiman, M. Aroua, Chem. Eng. Commun. 140, 1 (1995)

    Article  Google Scholar 

  45. E. Solbraa, Equilibrium and Non-equilibrium Thermodynamics of Natural Gas Processing. Ph.D. thesis, Norwegian University of Science and Technology, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhalim Shah Maulud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleman, H., Maulud, A.S. & Man, Z. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region. Int J Thermophys 37, 94 (2016). https://doi.org/10.1007/s10765-016-2103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2103-8

Keywords

Navigation