Skip to main content
Log in

Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this study, the experiments aimed at analyzing thermally the exhaust valve in an air-cooled internal combustion engine and estimating the thermal contact conductance in fixed and periodic contacts. Due to the nature of internal combustion engines, the duration of contact between the valve and its seat is too short, and much time is needed to reach the quasi-steady state in the periodic contact between the exhaust valve and its seat. Using the methods of linear extrapolation and the inverse solution, the surface contact temperatures and the fixed and periodic thermal contact conductance were calculated. The results of linear extrapolation and inverse methods have similar trends, and based on the error analysis, they are accurate enough to estimate the thermal contact conductance. Moreover, due to the error analysis, a linear extrapolation method using inverse ratio is preferred. The effects of pressure, contact frequency, heat flux, and cooling air speed on thermal contact conductance have been investigated. The results show that by increasing the contact pressure the thermal contact conductance increases substantially. In addition, by increasing the engine speed the thermal contact conductance decreases. On the other hand, by boosting the air speed the thermal contact conductance increases, and by raising the heat flux the thermal contact conductance reduces. The average calculated error equals to 12.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

CGM :

Conjugate gradient method

\(h_c \) :

Thermal contact conductance (W\({\cdot }\)m\(^{-2}\) \({\cdot }\)K\(^{-1}\))

k :

Thermal conductivity (W\({\cdot }\)m\(^{-1}\) \({\cdot }\)K\(^{-1}\))

q :

Heat flux (W\({\cdot }\)m\(^{-2}\))

T :

Temperature (K)

R :

Result function

x :

Cartesian spatial coordinate

W :

Uncertainty

\(e_{rms} \) :

Root mean square error

L:

Length (m)

t:

Time (s)

Y:

Measured temperatures (K)

\(T_0\) :

Constant temperature at x = 0 (K)

\(T_i \) :

Initial temperature (K)

\(\upalpha \) :

Thermal diffusivity (m\({\cdot }\)s\(^{-1}\))

\(\upbeta \) :

Search step size

\(\upgamma \) :

Conjugation coefficient

\(\Delta \) :

Variation

\(\updelta \) :

Distance from interface (m)

\(\Delta \)T:

Temperature drop (K)

\(\mathrm{P}\) :

Density (\(\hbox {kg}{\cdot }\hbox {m}^{-3}\))

\(\uplambda \) :

Lagrange multiplier satisfying the Adjoint problem

c :

Contact

i :

i-th parameter

j :

j-th sensor

k :

k-th sensor

References

  1. B. Vick, M.N. Ozisik, Quasi-steady state temperature distribution in periodically contacting finite regions. J. Heat Transf. 103, 739–744 (1981)

    Article  Google Scholar 

  2. W. M. Moses, R. R. Johnson, Experimental Results for the Quasi-steady Heat Transfer Through Periodically Contacting Surfaces, AIAA Paper, No. 87–1608 (1987)

  3. W.M. Moses, R.R. Johnson, J. Thermophys. 2(1), 37–42 (1988)

    Article  ADS  Google Scholar 

  4. M.H. Shojaeefard, A.R. Noorpoor, D.A. Bozchaloe, M. Ghaffarpour, Int. J. Numer. Heat Transf. 48, 1–18 (2005)

    Google Scholar 

  5. G.H. Ayers, MS Thesis, Texas A&M University, Mechanical Engineering, (2003)

  6. M. Cooper, B.B. Mikic, M.M. Yovanovich, J. Heat Mass Transf. 12, 279–300 (1969)

    Article  Google Scholar 

  7. A.M. Khounsary, D. Chojnowski, and L. Assoufid, Thermal contact resistance across a copper-silicon interface. SPIE Vol. 3151 (2008)

  8. K. Goudarzi, M. H. Shojaeefard, and M. Fazelpour, Arch. SID. 21(4), 401–408, (2008)

  9. V.B. Mykhaylyk, M. Burt, C. Ursachi, A. Wagner, Rev. Sci. Instrum. 83(3), 034902 (2012)

  10. B. Dongmei, C. Huanxin, T. Ye, Cryogenics 52, 403–409 (2012)

    Article  Google Scholar 

  11. H.R.B. Orlande, M.N. Ozisik, J. Thermophys. Heat Transf. 7(2), 319–325 (1993)

    Article  ADS  Google Scholar 

  12. C. H. Huang, T. M. Ju, National Heat Transfer Conference, New York (1993)

  13. T.C. Chen, P.C. Tuan, Numer. Heat Transf. Part B 41(5), 477–492 (2002)

    Article  ADS  Google Scholar 

  14. M.H. Shojaeefard, MSh Mazidi, VKh Mousapour, Mechanica 19(2), 167–171 (2013)

    Google Scholar 

  15. Honda Wave 125X Ultimate Specifications, http://www.motorcycle.in.th

  16. Stahlschlussel. Key to Steel, The Worldwide Competent Cross Reference Work 23. Edition (2013)

  17. G. W. Burns, M. G. Scroger, The Calibration of Thermocouples and Special Thermocouple Materials, National Institute of Standard and Technology (NIST) Special Publication 250–35, Washington, (1989)

  18. W.M. Moses, Ph.D. Dissertation, North Carolina State University (1985)

  19. M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications (Taylor & Francis, NewYork, 2000)

    Google Scholar 

  20. M.H. Shojaeefard, K. Goudarzi, MSh Mazidi, J. Thermal Sci. 18(2), 150–159 (2009)

    Article  ADS  Google Scholar 

  21. J.P. Holman, Experimental Methods for Engineers, 5h edn. (Mcraw Hill Book Company, New York, 1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Motahari Nezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezhad, M.M., Shojaeefard, M.H. & Shahraki, S. Studying the Transient Thermal Contact Conductance Between the Exhaust Valve and Its Seat Using the Inverse Method. Int J Thermophys 37, 13 (2016). https://doi.org/10.1007/s10765-015-2012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-015-2012-2

Keywords

Navigation