Skip to main content
Log in

Heat Transfer Characteristics in an Asymmetrical Solid–Liquid System by Molecular Dynamics Simulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Solid–liquid systems widely exist in micro- and nanodevices, and it is necessary to study the heat transfer mechanism through solid–liquid interfaces. An asymmetrical sandwich structure of a solid–liquid system consisting of liquid argon and artificial solid walls that have the same FCC structure with argon but a different atomic masses is composed. Heat transfer characteristics are investigated by the molecular dynamics method. The interaction strength between a liquid and solid plays an essential role in heat transport at solid–liquid interfaces, and the thermal resistance length is inversely proportional to it. The mass arrangement of artificial solid walls also has a significant effect on heat transport as well. A maximum heat flux comes up due to the mismatch in phonon spectra with the increasing atomic mass of one solid wall. The asymmetrical liquid density profiles are obtained with various mass differences between solid walls. Especially, a thermal rectification effect is observed and the magnitude is inextricably bound up with asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Maruyama, T. Kimura, Therm. Sci. Eng. 1, 63 (1999)

    Google Scholar 

  2. J.L. Barrat, F. Chiaruttini, Mol. Phys. 101, 1605 (2003)

    Article  ADS  Google Scholar 

  3. L. Xue, P. Keblinski, S.R. Phillpot, S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)

    Article  ADS  Google Scholar 

  4. L. Xue, P. Keblinski, S.R. Phillpot, S. Choi, J.A. Eastman, Int. J. Heat Mass Transf. 47, 4277 (2004)

    Article  MATH  Google Scholar 

  5. H.K. Bo, A. Beskok, T. Cagin, J. Chem. Phys. 129, 174701 (2008)

    Article  ADS  Google Scholar 

  6. T. Ohara, D. Torii, J. Chem. Phys. 122, 214717 (2005)

    Article  ADS  Google Scholar 

  7. D. Torii, T. Ohara, K. Ishida, J. Heat Transf. 132, 12402 (2010)

    Article  Google Scholar 

  8. J.V. Goicochea, M. Hu, B. Michel, D. Poulikakos, J. Heat Transf. 133, 82401 (2011)

    Article  Google Scholar 

  9. H. Acharya, N.J. Mozdzierz, P. Keblinski, S. Garde, Ind. Eng. Chem. Res. 51, 1767 (2012)

    Article  Google Scholar 

  10. M. Barisik, A. Beskok, J. Comput. Phys. 231, 7881 (2012)

    Article  ADS  Google Scholar 

  11. Z. Shi, M. Barisik, A. Beskok, Int. J. Therm. Sci. 59, 29 (2012)

    Article  Google Scholar 

  12. A. Pham, M. Barisik, B. Kim, J. Chem. Phys. 139, 244702 (2013)

    Article  ADS  Google Scholar 

  13. M. Barisik, A. Beskok, Mol. Simul. 39, 700 (2013)

    Article  Google Scholar 

  14. M. Barisik, A. Beskok, Int. J. Therm. Sci. 77, 47 (2014)

    Article  Google Scholar 

  15. T.P. An, M. Barisik, B. Kim, Int. J. Precis. Eng. Manuf. 15, 323 (2014)

    Article  Google Scholar 

  16. S. Murad, I.K. Puri, Appl. Phys. Lett. 92, 133101 (2008)

    Article  ADS  Google Scholar 

  17. S. Murad, I.K. Puri, Chem. Phys. Lett. 467, 110 (2008)

    Article  ADS  Google Scholar 

  18. S. Murad, I.K. Puri, Chem. Phys. Lett. 476, 267 (2009)

    Article  ADS  Google Scholar 

  19. S. Murad, I.K. Puri, J. Chem. Phys. 137, 81101 (2012)

    Article  Google Scholar 

  20. S. Murad, I.K. Puri, Appl. Phys. Lett. 100, 121901 (2012)

    Article  ADS  Google Scholar 

  21. S. Murad, I.K. Puri, Appl. Phys. Lett. 102, 193109 (2013)

    Article  ADS  Google Scholar 

  22. S. Murad, I.K. Puri, J. Chem. Phys. 139, 151102 (2013)

    Article  ADS  Google Scholar 

  23. S. Murad, I.K. Puri, Appl. Phys. Lett. 104, 211601 (2014)

    Article  ADS  Google Scholar 

  24. M. Hu, J.V. Goicochea, B. Michel, D. Poulikakos, Appl. Phys. Lett. 95, 151903 (2009)

    Article  ADS  Google Scholar 

  25. X. Liang, L. Sun, B. Shi, in Proceedings of Twelfth International Heat Transfer Conference, (Grenoble, France, 2002), pp. 557–567

  26. B.W. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  27. B.W. Li, J.H. Lan, L. Wang, Phys. Rev. Lett. 95, 104302 (2005)

    Article  ADS  Google Scholar 

  28. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  29. J.N. Hu, X.L. Ruan, Y.P. Chen, Nano Lett. 9(2730), 2730 (2009)

    Article  ADS  Google Scholar 

  30. N.A. Roberts, D.G. Walker, Int. J. Therm. Sci. 50, 648 (2011)

    Article  Google Scholar 

  31. S. Wang, X. Liang, Int. J. Therm. Sci. 50, 680 (2011)

    Article  Google Scholar 

  32. S.H. Ju, X.G. Liang, J. Appl. Phys. 112, 24307 (2012)

    Article  Google Scholar 

  33. S. Ju, X. Liang, J. Appl. Phys. 112, 54312 (2012)

    Article  ADS  Google Scholar 

  34. N. Yang, N. Li, L. Wang, B. Li, Phys. Rev. B 76, 20301 (2007)

    Article  ADS  Google Scholar 

  35. G. Wu, B.W. Li, Phys. Rev. B 76, 85421 (2007)

    Article  Google Scholar 

  36. N. Yang, G. Zhang, B.W. Li, Appl. Phys. Lett. 95, 33103 (2009)

    Article  Google Scholar 

  37. P.P. Patel, P.N. Gajjar, Phys. Lett. A 378, 25224 (2014)

    Article  Google Scholar 

  38. S. Pal, I.K. Puri, Nanotechnology 25, 345 (2014)

    Article  Google Scholar 

  39. K. Gordiz, S. Allaei, J. Appl. Phys. 115, 163512 (2014)

    Article  ADS  Google Scholar 

  40. A. Saeedi, F.Y. Akizi, S. Khademsadr, M.E. Foulaadvand, Solid State Commun. 179, 54 (2014)

    Article  ADS  Google Scholar 

  41. T. Schneider, E. Stoll, Phys. Rev. B 17, 1302 (1978)

    Article  ADS  Google Scholar 

  42. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  43. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, New York, 2004)

    Book  MATH  Google Scholar 

  44. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  45. R. Vogelsang, C. Hoheisel, G. Ciccotti, J. Chem. Phys. 86, 6371 (1987)

    Article  ADS  Google Scholar 

  46. W.F. Van Gunsteren, A.E. Mark, J. Chem. Phys. 108, 6109 (1998)

    Article  ADS  Google Scholar 

  47. S.H. Ju, X.G. Liang, S.C. Wang, J. Phys. D 43, 085407 (2010)

    Article  ADS  Google Scholar 

  48. P.K. Schelling, S.R. Phillpot, P. Keblinski, Appl. Phys. Lett. 80, 2484 (2002)

    Article  ADS  Google Scholar 

  49. Z. Tian, K. Esfarjani, G. Chen, Phys. Rev. B 89, 235306 (2014)

    Article  ADS  Google Scholar 

  50. X.B. Li, R.G. Yang, Phys. Rev. B 86, 54305 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2012CB933200), the National Natural Science Foundation of China (Grant No. 51176091), and the Science Fund for Creative Research Groups of China (Grant No. 51321002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Liang, X. Heat Transfer Characteristics in an Asymmetrical Solid–Liquid System by Molecular Dynamics Simulations. Int J Thermophys 36, 1519–1529 (2015). https://doi.org/10.1007/s10765-015-1897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1897-0

Keywords

Navigation