Skip to main content
Log in

MD Study on the Thermal Conductivity of Molten Alkali Halides: Effect of Ionic Mass Difference

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A definition suitable for the average ionic mass used for two kinds of expressions of the thermal conductivity for molten alkali halides has been explored from the viewpoint of the difference in anion and cation masses. One is the scaling equation, \({\lambda } \propto \) \(m^{-1/2}\) \((N/V)^{2/3}\), where \({m}\) is the average ionic mass between the anion and cation and \(N/V\) is the number density, which was previously obtained from molecular dynamics (MD) simulation. The other is the equation used in the corresponding-states (CS) analysis which has been applied to the thermal conductivities calculated by the MD simulation. Among some representative definitions, it turned out that a simple arithmetic average is best for the equation. As an estimation method of the thermal conductivity, it was shown that both equations have comparable precision. It was indicated that considering the difference in ionic masses between the anion and cation is important for building a more precise correlation in the CS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Nagasaka, N. Nakazawa, A. Nagashima, Int. J. Thermophys. 13, 555 (1992)

    Article  ADS  Google Scholar 

  2. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 753 (1992)

    Article  ADS  Google Scholar 

  3. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 763 (1992)

    Article  ADS  Google Scholar 

  4. Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 14, 923 (1993)

    Article  ADS  Google Scholar 

  5. N. Ohtori, T. Oono, K. Takase, J. Chem. Phys. 130, 044505 (2009)

    Article  ADS  Google Scholar 

  6. N. Ohtori, M. Salanne, P.A. Madden, J. Chem. Phys. 130, 104507 (2009)

    Article  ADS  Google Scholar 

  7. M. Salanne, D. Marrocchelli, C. Merlet, N. Ohtori, P.A. Madden, J. Phys. Condens. Matter 23, 102101 (2011)

    Article  ADS  Google Scholar 

  8. K. Takase, Y. Matsumoto, K. Sato, N. Ohtori, Mol. Simul. 38, 432 (2012)

    Article  Google Scholar 

  9. N. Ohtori, Y. Ishii, Y. Togawa, T. Oono, K. Takase, Phys. Rev. E 89, 022129 (2014)

    Article  ADS  Google Scholar 

  10. Y. Tada, S. Hiraoka, T. Uemura, M. Harada, Ind. Eng. Chem. Res. 27, 1042 (1988)

    Article  Google Scholar 

  11. P. Sindzingre, M.J. Gillan, J. Phys. Condens. Matter 2, 7033 (1990)

    Article  ADS  Google Scholar 

  12. F.G. Fumi, M.P. Tosi, J. Phys. Chem. Solids 25, 31 (1964)

    Article  ADS  Google Scholar 

  13. M.P. Tosi, F.G. Fumi, J. Phys. Chem. Solids 25, 45 (1964)

    Article  ADS  Google Scholar 

  14. K. Takase, N. Ohtori, Electrochemistry 67, 581 (1999)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant-in-Aid for Scientific Research (c) (Grant Nos. 17550175, 21540382, and 24540397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norikazu Ohtori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, Y., Oono, T., Takase, K. et al. MD Study on the Thermal Conductivity of Molten Alkali Halides: Effect of Ionic Mass Difference. Int J Thermophys 35, 320–326 (2014). https://doi.org/10.1007/s10765-014-1593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1593-5

Keywords

Navigation