Skip to main content
Log in

Effects of Annealing Temperature on Thermomechanical Properties of Cu–Al–Ni Shape Memory Alloys

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The effects of the annealing temperature on structural properties and the phase transformation of a Cu–14.1Al–3.9Ni (mass %) shape memory alloy (SMA) have been investigated. The annealing process was carried out at temperatures in the range of \(700\,^{\circ }{\mathrm{C}}\) to \(850\,^{\circ }{\mathrm{C}}\). The structural changes of the as-quenched and annealed samples were studied by optical microscope and X-ray diffraction measurements. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The activation energy and thermodynamic parameters of the samples were determined. It was found that the heat treatment has an effect on the characteristic transformation temperatures and on thermodynamic parameters such as enthalpy, entropy, and activation energy. The crystallite size of the as-quenched and annealed samples were determined. Vickers hardness measurements of the as-quenched and annealed samples were also carried out. It is evaluated that the transformation parameters of a CuAlNi SMA can be controlled by heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Lojen, I. Anzel, A. Kneissl, A. Krizman, E. Unterweger, B. Kosec, M. Bizjak, J. Mater. Process. Technol. 162–163, 220 (2005)

    Article  Google Scholar 

  2. M. Izadinia, K. Dehghani, Trans. Nonferrous Met. Soc. China 21, 2037 (2011)

    Article  Google Scholar 

  3. V. Recarte, J.I. Perez-Landazabal, P.P. Rodriguez, E.H. Bocanegra, M.L. No, J. San Juan Acta Mater. 52, 3941 (2004)

    Article  Google Scholar 

  4. C.E. Sobrero, P. La Roca, A. Roatta, R.E. Bolmaro, J. Malarria, Mater. Sci. Eng. A 536, 207 (2012)

    Article  Google Scholar 

  5. H. Kato, Y. Yasuda, K. Sasaki, Acta Mater. 59, 3955 (2011)

    Article  Google Scholar 

  6. N. Suresh, U. Ramamurty, J. Alloys Compd. 499, 113 (2008)

    Article  Google Scholar 

  7. G.K. Kannarpady, A. Bhattacharyya, S. Pulnev, I. Vahni, J. Alloys Compd. 425, 112 (2006)

    Article  Google Scholar 

  8. N. Zarubova, J. Gemperlova, A. Gemperle, Z. Dlabacek, P. Sittner, V. Novak, Acta Mater. 58, 5109 (2010)

    Article  Google Scholar 

  9. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, 1998)

  10. S.M. Chentouf, M. Bouabdallah, J.-I. Gachon, E. Patoor, A. Sari, J. Alloys Compd. 470, 507 (2009)

    Article  Google Scholar 

  11. M. Colic, R. Ruddolf, D. Stamenkovic, I. Anzel, D. Vucevic, M. Jenko, V. Lazic, G. Lojen, Acta Biomater. 6, 308 (2010)

    Article  Google Scholar 

  12. F.M. Sanchez-Arevalo, W. Aldama-Reyna, A.G. Lara-Rodriguez, T. Garcia-Fernandez, G. Pulos, M. Trivi, M. Villagram-Muniz, Mater. Charact 61, 518 (2010)

    Article  Google Scholar 

  13. J. Rodriguez-Aseguinoloaza, I. Ruiz-Larrea, M.L. No, A. Lopez-Echarri, J.M. San Juan, Acta Mater. 58, 3711 (2008)

    Article  Google Scholar 

  14. M.O. Prado, P.M. Decorte, F. Lovey, Scr. Metall. Mater 33, 878 (1995)

    Article  Google Scholar 

  15. R.J. Salzbrenner, M. Cohen, Acta Metall. 27, 739 (1979)

    Article  Google Scholar 

  16. J. Ortin, A. Planes, Acta Metall. 37, 1873 (1988)

    Google Scholar 

  17. E. Obrado, L. Manosa, Phys. IV. France 7, Colloque C5, Supplement au Jour. De Phys. III de Novembre (1997).

  18. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 20, 1 (2011)

    Article  Google Scholar 

  19. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  20. T. Ozawa, Anal. Calorim. 2, 321 (1970)

    Google Scholar 

  21. Q. Xuan, J. Bohong, T.Y. Hsu, Mater. Sci. Eng. 93, 05 (1987)

    Article  Google Scholar 

  22. C. Aksu Canbay, The Production of Cu-based Shape Memory Alloys and Investigation of Microstructural, Thermal and Electrical Properties of Alloys, Ph.D. Thesis, Fırat University, Institue of Science, Elazığ/Turkey, (2010) [In Turkish].

  23. J.I. Perez-Landazabal, V. Recarte, V. Sanchez-Alarcos, M.L. No, J. San Juan, Mater. Sci. Eng Struct. Mater. 438–440, 7–34 (2006)

    Google Scholar 

  24. Q. Meng, H. Yang, Y. Liu, T. Nam, Intermetallics 18, 2431 (2010)

    Article  Google Scholar 

  25. C. Aydın, H.M. El-Nasser, F. Yakuphanoglu, I.S. Yahia, M. Aksoy, J. Alloys Compd. 509, 854 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Aksu Canbay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canbay, C.A., Karagoz, Z. Effects of Annealing Temperature on Thermomechanical Properties of Cu–Al–Ni Shape Memory Alloys. Int J Thermophys 34, 1325–1335 (2013). https://doi.org/10.1007/s10765-013-1486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1486-z

Keywords

Navigation