Skip to main content
Log in

Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water–glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones M., Harrison J.M.: Diabetes Technol. Ther. 4, 351 (2002)

    Article  Google Scholar 

  2. M.B. Davidson, Diabetes mellitus—Diagnosis and Treatment, 3rd edn. (Churchill Livingstone, New York, 1991), pp. 231–232

  3. S. Auxter, Clin. Chem. News 5 (1996)

  4. McNichols R., Coté G.: J. Biomed. Opt. 5, 5 (2000)

    Article  ADS  Google Scholar 

  5. Tura A., Maran A., Pacini G.: Diabetes Res. Clin. Pract. 77, 16 (2007)

    Article  Google Scholar 

  6. V.V. Tuchin (ed.), Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, 1st edn. (CRC Press, Boca Raton, 2008)

  7. Pouchert C.J.: The Aldrich Library of Infrared Spectra. Aldrich Chemical Co., Milwaukee (1981)

    Google Scholar 

  8. MacKenzie H.A., Ashton H.S., Spiers S., Shen Y., Freeborn S.S., Hannigan J., Lindberg J., Rare P.: Clin. Chem. 45, 1587 (1999)

    Google Scholar 

  9. Christison G.B., McKenzie H.A.: Med. Biol. Eng. Comput. 31, 284 (1993)

    Article  Google Scholar 

  10. Martin W., Mirov S., Venugopalan R.: Appl. Spec. 59, 881 (2005)

    Article  ADS  Google Scholar 

  11. Martin W., Mirov S., Venugopalan R.: J. Biomed. Opt. 7, 613 (2002)

    Article  ADS  Google Scholar 

  12. Zheng P., Cramer C.E., Barnes C.W., Braig J.R., Sterling B.B.: Diabetes Technol. Ther. 2, 1 (2000)

    Article  Google Scholar 

  13. A. Mandelis, X. Guo, US Patent pending No. 12/948,525 (2010)

  14. Guo X., Mandelis A, Matvienko A., Sivagurunathan K., Zinman B.: J. Phys. Conf. Ser. 214, 012025 (2010)

    Article  ADS  Google Scholar 

  15. Mandelis A., Guo X.: Phys. Rev. E 84, 041917 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Mandelis, A. & Zinman, B. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR). Int J Thermophys 33, 1814–1821 (2012). https://doi.org/10.1007/s10765-012-1276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1276-z

Keywords

Navigation