Skip to main content
Log in

Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The phonon contribution to the thermal boundary conductance (TBC) at metal–metal interfaces is difficult to study experimentally, and it is typically considered negligible. In this study, molecular dynamics simulations (MDS), employing an embedded atom method (EAM) potential, are performed to study the phonon contribution to thermal transport across an Al–Cu interface. The embedded atom method provides a realistic model of atomic behavior in metals, while suppressing the effect on conduction electrons. In this way, measurements on the phonon system may be observed that would otherwise be dominated by the electron contribution in experimental methods. The relative phonon contribution to the TBC is calculated by comparing EAM results to previous experimental results which include both electron and phonon contributions. It is seen from the data that the relative phonon contribution increases with decreasing temperature, possibly accounting for more than half the overall TBC at temperatures below 100 K. These results suggest that neglect of interfacial phonon transport may not be a valid assumption at low temperatures, and may have implications in the future development of TBC models for metal interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan T.-D., Hong B.Z., Chen H.-H., Wang L.-K.: Microelectron. Reliab. 42, 101 (2002)

    Article  Google Scholar 

  2. Ernst F.: Mater. Sci. Eng. 14, 97 (1995)

    Article  Google Scholar 

  3. Kapitza P.L.: Zh. eksp. teor. fiziki 11, 1 (1941)

    Google Scholar 

  4. Stevens R.J., Smith A.N., Norris P.M.: J. Heat Transfer 127, 315 (2005)

    Article  Google Scholar 

  5. Capinski W.S., Maris H.J., Ruf T., Cardona M., Ploog K., Katzer D.S.: Phys. Rev. B 59, 8105 (1999)

    Article  ADS  Google Scholar 

  6. Goodson K.E., Ju Y.S.: Ann. Rev. Mater. Sci. 29, 261 (1999)

    Article  Google Scholar 

  7. Kittel C.: Introduction to Solid State Physics, 7th edn. Wiley, New York, (1996)

    Google Scholar 

  8. Swartz E.T., Pohl R.O.: Appl. Phys. Lett. 51, 2200 (1987)

    Article  ADS  Google Scholar 

  9. Swartz E.T., Pohl R.O.: Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  10. Choi S.-H., Maruyama S.: Int. J. Therm. Sci. 44, 547 (2005)

    Article  Google Scholar 

  11. Reddy P., Castelino K., Majumdar A.: Appl. Phys. Lett. 87, 211908 (2005)

    Article  ADS  Google Scholar 

  12. Daw M.S., Baskes M.I.: Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  13. Foiles S.M., Baskes M.I., Daw M.S.: Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  14. Daw M.S., Baskes M.I.: Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  15. Lukes J.R., Li D.Y., Liang X.-G., Tien C.-L.: Trans. ASME 122, 536 (2000)

    Article  Google Scholar 

  16. Gundrum B.C., Cahill D.G., Averback R.S.: Phys. Rev. B 72, 1 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salaway, R.N., Hopkins, P.E., Norris, P.M. et al. Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations. Int J Thermophys 29, 1987–1996 (2008). https://doi.org/10.1007/s10765-008-0513-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0513-y

Keywords

Navigation