Skip to main content
Log in

Thermophysical Properties of Gaseous CF4 and C2F6 from Speed-of-Sound Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A cylindrical resonator was employed to measure the sound speeds in gaseous CF4 and C2F6. The CF4 measurements span the temperature range 300 to 475 K, while the C2F6 measurements range from 210 to 475 K. For both gases, the pressure range was 0.1 MPa to the lesser of 1.5 MPa or 80% of the sample’s vapor pressure. Typically, the speeds of sound have a relative uncertainty of less than 0.01 % and the ideal-gas heat capacities derived from them have a relative uncertainty of less than 0.1%. The heat capacities agree with those determined from spectroscopic data. The sound speeds were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two models for the virial coefficients were employed, one based on square-well potentials and the second based on a Kihara spherical-core potential. The resulting virial equations reproduce the sound-speed measurements to within 0.005 % and yield densities with relative uncertainties of 0.1% or less. The viscosity calculated from the Kihara potential is 2 to 11% less than the measured viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Ewing and J. P. M. Trusler, J. Chem. Phys. 90:1106 (1989).

    Article  CAS  ADS  Google Scholar 

  2. T. Kihara, Rev. Mod. Phys. 25:831 (1953).

    Article  CAS  MATH  ADS  Google Scholar 

  3. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 95:5236 (1991).

    Article  CAS  ADS  Google Scholar 

  4. K. A. Gillis, Int. J. Thermophys. 18:73 (1997).

    Article  CAS  Google Scholar 

  5. K. A. Gillis, Int. J. Thermophys. 15:821 (1994).

    Article  CAS  Google Scholar 

  6. K. A. Gillis, A. R. H. Goodwin, and M. R. Moldover, Rev. Sci. Instrum. 62:2213 (1991).

    Article  ADS  Google Scholar 

  7. International Fire Code Institute, Uniform Fire Code, 1994 ed.

  8. American Society of Mechanical Engineers. Boiler and Pressure Vessel Committee, Qualification Standard for Welding Procedures, Welders, and Welding Operators. 1998 ed.

  9. J. W. S. Rayleigh, Theory of Sound (Dover, New York, 1945).

    MATH  Google Scholar 

  10. K. A. Gillis and M. R. Moldover, Int. J. Thermophys. 17:1305 (1996).

    Article  CAS  Google Scholar 

  11. E. L. Pace and J. G. Aston, J. Am. Chem. Soc. 70:566 (1948).

    Article  CAS  Google Scholar 

  12. T. N. Bell, C. M. Bignell, and P. J. Dunlop, Physica A 181:221 (1992).

    Article  CAS  ADS  Google Scholar 

  13. J. P. M. Trusler, Int. J. Thermophys. 18:635 (1997).

    Article  CAS  Google Scholar 

  14. E. A. Mason and T. H. Spurting, The Virial Equation of State (Pergamon, Oxford, 1969).

    Google Scholar 

  15. R. J. Dulla, J. S. Rowlinson, and W. R. Smith, Mol. Phys. 21:229 (1971).

    Article  Google Scholar 

  16. B. M. Axilrod and E. J. Teller, J. Chem. Phys. 11:299 (1943).

    Article  CAS  ADS  Google Scholar 

  17. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  18. BYU DIPPR801 Thermophysical Properties Database (Brigham Young University, Provo, UT, 1998).

  19. S. A. Klein, M. O. McLinden, and A. Laesecke, Int. J. Refrig. 20:208 (1997).

    Article  CAS  Google Scholar 

  20. Landolt-Bornstein, Zahlenwerte und Funktionen, Vol. 2, Part 4. Kalorische Zustandsgrossen, 6th ed. (Springer-Verlag, Berlin, 1961).

    Google Scholar 

  21. L. V. Gurivich, Thermodynamic Properties of Chemical Substances, Vol. 2 (Academy of Sciences, USSR, 1962).

    Google Scholar 

  22. D. D. Wagman, W. H. Evans, V. B. Parker, I. L. Halow, S. M. Bailey, and R. H. Schumm, Selected Values of chemical Thermodynamic Properties, National Bureau of Standards Technical Note 270-3 (1968).

  23. D. R. Stull, E. F. Westrum, and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969).

    Google Scholar 

  24. A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 3:117 (1974).

    CAS  ADS  Google Scholar 

  25. M. W Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data (Suppl.1) 14:1 (1985).

    CAS  Google Scholar 

  26. Y. T. Hwang and H. H. Martin, AlChE J. 10:89 (1964).

    CAS  Google Scholar 

  27. J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Oxford Press, New York, 1980).

    Google Scholar 

  28. W. Cawood and H. S. Patterson, Phil. Trans. Roy. Soc. A236:77 (1937).

    ADS  Google Scholar 

  29. K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 19:845 (1959).

    Article  ADS  Google Scholar 

  30. S. D. Hamann, J. A. Lambert, and W. J. McManamey, Aust. J. Chem. 7:1 (1954).

    CAS  Google Scholar 

  31. D. R. Douslin, R. H. Harrison, R. T. Moore, and J. P. McCullough, J. Chem. Phys. 35:1357 (1961).

    Article  CAS  ADS  Google Scholar 

  32. N. K. Kalfoglou and J. G. Miller, J. Phys. Chem. 71:1256 (1967).

    Article  CAS  Google Scholar 

  33. H. B. Lange and F. P. Stein, J. Chem. Eng. Data 15:56 (1970).

    Article  CAS  Google Scholar 

  34. P. M. Sigmund, I. H. Silberberg, and J. J. McKetta, J. Chem. Eng. Data 17:168 (1972).

    Article  CAS  Google Scholar 

  35. T. K. Bose, J. S. Sochanski, and R. H. Cole, J. Chem. Phys. 57:3592 (1972).

    Article  CAS  ADS  Google Scholar 

  36. J. Timmermans, Physico-Chemical Constants of Pure Organic Substances, 2nd ed. (Elsevier, New York, 1965).

    Google Scholar 

  37. Y. S. Touloukian, Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).

    Google Scholar 

  38. W. Braker and A. L. Mossman, Matheson Gas Data Book, unabridged ed. (Matheson, East Rutherford, NJ, 1974).

    Google Scholar 

  39. J. M. Hellemans, Physica 65:276 (1973).

    Google Scholar 

  40. R. M. Young. W. R. F. Vale, J. Scrivins, A. M. Robinson, M. W. Pailthorpe, J. D. Lambert, and K. J. Cotton, Proc. Roy. Soc. (London) A 231:280 (1955).

    Article  ADS  Google Scholar 

  41. N. M. Singh and J. C. McCoubrey, Trans. Faraday Soc. 53:877 (1957).

    Article  Google Scholar 

  42. W. A. Wakeham, S. T. Ro, and J. Kestin, Trans. Faraday Soc. 67:2308 (1971).

    Article  Google Scholar 

  43. E. A. Mason, J. Kestin, J. Bzowski, and A. Bousheri, J. Phys. Chem. Ref. Data 16:445 (1987).

    Article  ADS  Google Scholar 

  44. Freon Products (E. I. DuPont de Nemours, Freon Products Division, Wilmington, DE, 1969).

  45. D. Reichenberg, The Viscosity of Organic Vapors at Low Pressures, DSC Rep. 11 (National Physical Laboratory, Teddington, England, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurly, J.J. Thermophysical Properties of Gaseous CF4 and C2F6 from Speed-of-Sound Measurements. Int J Thermophys 20, 455–484 (1999). https://doi.org/10.1007/s10765-005-0001-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-0001-6

Key Words