Skip to main content

Advertisement

Log in

Pre-service Primary Science Teachers’ Abilities for Solving a Measurement Problem Through Inquiry

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

This article presents a qualitative descriptive-interpretive study about the abilities of pre-service primary science teachers (PPTs) to solve a measurement problem put to them as an activity of scientific inquiry. The participants in the study were 23 PPTs receiving training in science teaching, organized into small groups to solve the proposed problem. The data were collected through reports they prepared from a script with open-response questions that referred on the one hand to the planning, development and conclusions obtained with the scientific inquiry and on the other to promoting the PPTs’ metacognitive reflection regarding the difficulties encountered, the lessons learned and their proposals for improvement for future activities on similar measurements. The information was analysed in three phases to increasingly refine the coding of this. The results revealed that, overall, the PPTs were able to complete the scientific inquiry with a fairly acceptable degree of efficacy. A discussion of the results emphasizes the usefulness of the procedural-type scientific inquiry activities to initiate PPTs in their approach to inquiry-based science education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., . . . Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419.

  • Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335–2353.

    Article  Google Scholar 

  • Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.

    Article  Google Scholar 

  • Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.

    Article  Google Scholar 

  • Aydoğdu, B. (2015). Examining preservice science teachers’ skills of formulating hypotheses and identifying variables. Asia-Pacific Forum on Science Learning and Teaching, 16(1), 1–38.

  • Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.

    Google Scholar 

  • Barolli, E., Laburú, C. E., & Guridi, V. M. (2010). Laboratorio didáctico de ciencias: Caminos de investigación [Didactic laboratory of science: Research paths]. Revista Electrónica de Enseñanza de las Ciencias, 9(1), 88–110.

    Google Scholar 

  • Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools and challenges. International Journal of Science Education, 32(3), 349–377.

    Article  Google Scholar 

  • Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20–31.

    Google Scholar 

  • Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17–29.

    Article  Google Scholar 

  • Bulunuz, M. (2012). Motivational qualities of hands-on science activities for Turkish preservice kindergarten teachers. Eurasia Journal of Mathematics, Science & Technology Education, 8(2), 73–82.

    Google Scholar 

  • Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.

    Article  Google Scholar 

  • Cañal, P., Travé, G., & Pozuelos, F. J. (2011). Análisis de obstáculos y dificultades de profesores y estudiantes en la utilización de enfoques de investigación escolar [An analysis of the teachers’ and students’ obstacles and difficulties on the use of inquiry approach]. Investigación en la Escuela, 73, 5–26.

    Google Scholar 

  • Cañal, P., Criado, A. M., García-Carmona, A., & Muñoz, G. (2013). La enseñanza relativa al medio en las aulas españolas de Educación Infantil y Primaria: Concepciones didácticas y práctica docente [The teaching related to the environment in the Spanish classrooms of Infant and Primary Education: Didactic conceptions and teaching practice]. Investigación en la Escuela, 81, 21–42.

  • Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las Ciencias Experimentales en Educación Primaria [Didactics of Experimental Sciences in Primary Education]. Madrid, Spain: Paraninfo.

  • Capps, D. K., & Crawford, B. A. (2013). Inquiry-based professional development: What does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.

    Article  Google Scholar 

  • Caussarieu, A., & Tiberghien, A. (2017). When and why are the values of physical quantities expressed with uncertainties? A case study of a physics undergraduate laboratory course. International Journal of Science and Mathematics Education, 15(6), 997–1015.

    Article  Google Scholar 

  • Cortés, A. L., & Gándara, M. (2006). La construcción de problemas en el laboratorio durante la formación del profesorado: Una experiencia didáctica [Building problems in the laboratory during teacher training: A didactic experience]. Enseñanza de las Ciencias, 25(3), 435–450.

    Google Scholar 

  • Cortés, A. L., Gándara, M., Calvo, J. M., Martínez, M. B., Ibarra, M., Arlegui, J., & Gil, M. J. (2012). Expectativas, necesidades y oportunidades de los maestros en formación ante la enseñanza de las ciencias en la educación primaria [Expectations, needs and opportunities of pre-service teachers in view of science teaching in primary education]. Enseñanza de las Ciencias, 30(3), 155–176.

    Google Scholar 

  • Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642.

    Article  Google Scholar 

  • Criado, A. M., & García-Carmona, A. (2011). Las experiencias prácticas para el conocimiento del medio (natural y tecnológico) en la formación inicial de maestros [The practical experiences for the knowledge of the environment (natural and technological) in the initial formation of teachers]. Investigación en la Escuela, 74, 73–88.

  • Cruz-Guzmán, M., García-Carmona, A. & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education. https://doi.org/10.1080/09500693.2017.1351649.

  • Ferrés, C., Marbà, A., & Sanmartí, N. (2015). Trabajos de indagación de los alumnos: Instrumentos de evaluación e identificación de dificultades [Students’ inquiry works: Assessment tools and identification of difficulties]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 22–37.

    Article  Google Scholar 

  • Flores, J., Caballero, M. C., & Moreira, M. A. (2009). El laboratorio en la enseñanza de las ciencias: Una visión integral en este complejo ambiente de aprendizaje [The science laboratory teaching: An integral vision in this complex learning environment]. Revista de Investigación, 33, 75–111.

    Google Scholar 

  • García-Carmona, A. (2012). Cómo enseñar naturaleza de la ciencia (NDC) a través de experiencias escolares de investigación científica [How to teach Nature of Science (NDC) through scholarly scientific research experiences]. Alambique, 72, 55–63.

  • García-Carmona, A., & Acevedo, J. A. (2016). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Concepts of primary school teacher students on the nature of science: A diagnostic evaluation based on team reflections]. Revista Mexicana de Investigación Educativa, 21(69), 583–610.

  • García-Carmona, A., & Cruz-Guzmán, M. (2016). ¿Con qué vivencias, potencialidades y predisposiciones inician los futuros docentes de Educación Primaria su formación en la enseñanza de la ciencia? [What experiences, potentials and predispositions initiate future teachers of Primary Education training in teaching science?]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 440–458.

  • García-Carmona, A., Cruz-Guzmán, M., & Criado, A. M. (2014). “¿Qué hacías para aprobar los exámenes de ciencias, qué aprendiste y qué cambiarías?”. Preguntamos a futuros docentes de Educación Primaria [“What did you do to pass the science exams, what did you learn and what would you change?” We ask future teachers of Primary Education]. Investigación en la Escuela, 84, 31–46.

  • García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2016). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-016-9773-3.

  • García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010.

  • Godino, J. D., Batanero, M. C., & Roa, R. (2002). Medida de magnitudes y su didáctica para maestros [Elementary teacher education on measurement of magnitudes]. Granada, Spain: Universidad de Granada.

  • Guisasola, J., Ceberio, M., & Zubimendi, J. L. (2006). University students’ strategies for constructing hypothesis when tackling paper-and-pencil tasks in physics. Research in Science Education, 36(3), 163–186.

    Article  Google Scholar 

  • Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste, Italy: IAP.

  • Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1, 5–19.

    Google Scholar 

  • Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30–38.

    Article  Google Scholar 

  • Hodson, D. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.

    Article  Google Scholar 

  • Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806.

    Article  Google Scholar 

  • Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748–769.

    Article  Google Scholar 

  • Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding science talk: The role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004–2027.

    Article  Google Scholar 

  • Kim, M., & Tan, A.-L. (2011). Rethinking difficulties of teaching inquiry-based practical work: Stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465–486.

    Article  Google Scholar 

  • Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education, 6(3), 601–627.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students’ achievement, science process skills, and attitudes toward science. International Journal of Science Education, 36(1), 66–78.

    Article  Google Scholar 

  • Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277–311.

    Article  Google Scholar 

  • Lucero, M., Valcke, M., & Schellens, T. (2013). Teachers’ beliefs and self-reported use of inquiry in science education in public primary schools. International Journal of Science Education, 35(8), 1407–1423.

    Article  Google Scholar 

  • McLaughlin, C. A., & MacFadden, B. J. (2014). At the elbows of scientists: Shaping science teachers’ conceptions and enactment of inquiry-based instruction. Research in Science Education, 44(6), 927–947.

    Article  Google Scholar 

  • Mellado, V., Blanco, L. J. & Ruiz, C. (1998). A framework for learning to teach science in initial primary teacher education. Journal of Science Teacher Education, 9(3), 195–219.

  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.

    Article  Google Scholar 

  • Newman, W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.

    Article  Google Scholar 

  • Nivalainen, V., Asikainen, M. A., & Hirvonen, P. E. (2013). Preservice teachers’ objectives and their experience of practical work. Physical Review Special Topics—Physics Education Research, 9(1), 010102.

    Article  Google Scholar 

  • Nivalainen, V., Asikainen, M. A., Sormunen, K., & Hirvonen, P. E. (2010). Preservice and inservice teachers’ challenges in the planning of practical work in physics. Journal of Science Teacher Education, 21(4), 393–409.

    Article  Google Scholar 

  • Oliver-Hoyo, M., & Allen, D. (2006). The use of triangulation methods in qualitative educational research. Journal of College Science Teaching, 35(4), 42–47.

    Google Scholar 

  • Ozdem, Y., Ertepinar, H., Cakiroglu, J., & Erduran, S. (2013). The nature of pre-service science teachers’ argumentation in inquiry-oriented laboratory context. International Journal of Science Education, 35(15), 2559–2586.

    Article  Google Scholar 

  • Priemer, B. & Hellwig, J. (2016). Learning about measurement uncertainties in secondary education: A model of the subject matter. International Journal of Science and Mathematics Education, 1–24. https://doi.org/10.1007/s10763-016-9768-0

  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels, Belgium: Directorate General for Research, Science, Economy and Society.

  • Sadeh, I., & Zion, M. (2009). The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 46(10), 1137–1160.

    Article  Google Scholar 

  • Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching, 53(7), 980–1002.

    Article  Google Scholar 

  • Seale, C. (1999). The quality of qualitative research. London, England: SAGE.

  • Seraphin, K. D., Philippoff, J., Kaupp, L., & Vallin, L. M. (2012). Metacognition as means to increase the effectiveness of inquiry-based science education. Science Education International, 23(4), 366–382.

    Google Scholar 

  • Seung, E., Park, S., & Jung, J. (2014). Exploring preservice elementary teachers’ understanding of the essential features of inquiry-based science teaching using evidence-based reflection. Research in Science Education, 44(4), 507–529.

    Article  Google Scholar 

  • Yang, K. K., Lee, L., Hong, Z. R., & Lin, H. S. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133–2151.

    Article  Google Scholar 

  • Yoon, H. G., Joung, Y. J., & Kim, M. (2012). The challenges of science inquiry teaching for pre-service teachers in elementary classrooms: Difficulties on and under the scene. Research in Science Education, 42(3), 589–608.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Economy and Competitiveness (Spain) under grant EDU2013-41003-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio García-Carmona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Carmona, A. Pre-service Primary Science Teachers’ Abilities for Solving a Measurement Problem Through Inquiry. Int J of Sci and Math Educ 17, 1–21 (2019). https://doi.org/10.1007/s10763-017-9858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-017-9858-7

Keywords

Navigation