Skip to main content
Log in

Theoretical Exploration of Terahertz Single-Photon Detection and Imaging by Nonlinear Optical Frequency Up-Conversion

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz single-photon detection and imaging have attracted full attention recently. Nonlinear optical frequency up-conversion is a promising technique that can be expected to satisfy this demand thanks to its high sensitivity and fast response. In this paper, theoretical analysis and numerical calculations based on the organic salt 4′-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal were performed to show that the optimization of the detection of terahertz is different from that of the generation of terahertz, including the use of difference-frequency generation (DFG) technique, the larger thickness of the crystal, and especially the selection of the polarization direction of the pumping laser. For two different polarization configurations, the photons of the up-converted signal light both can be amplified compared with the number of incident terahertz photons under some optimal designs of the nonlinear frequency conversion process. Therefore, terahertz single-photon detection can be realized with single-photon detectors (SPDs) or even possibly with ordinary avalanche photodiodes (APDs). Furthermore, for terahertz single-photon imaging, the frequency up-conversion with the pumping laser polarized along b-axis of DAST crystal has a better performance, which is rarely used in terahertz generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Tonouchi, Cutting-edge terahertz technology, Nat. Photonics 1, 97-105 (2007).

    Google Scholar 

  2. X. C. Zhang, and J. Xu, Introduction to THz Wave Photonics, pp.175-236. Springer Science+Business Media LLC, Springer New York Dordrecht Heidelberg London (2010).

  3. F. Sizov, and A. Rogalski, THz detectors, Prog. Quantum Electron. 34, 278-347 (2010).

    Google Scholar 

  4. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses, Appl. Phys. Lett. 85, 3974-3976 (2004).

    Google Scholar 

  5. S. Komiyama, Single-Photon Detectors in the Terahertz Range, IEEE J. Sel. Top. Quantum Electron. 17, 54-66 (2011).

    Google Scholar 

  6. H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, P. Kleinschmid, S. Giblin, and S. Komiyama, Isolated quantum dot in application to terahertz photon counting, Phys. Rev. B 73, 081310-1 (2006).

    Google Scholar 

  7. T. Ueda, Z. An, K. Hirakawa, and S. Komiyama, Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer, J. Appl. Phys. 103, 93109 (2008).

    Google Scholar 

  8. H. Guerboukha, K. Nallappan, and M. Skorobogatiy, Toward real-time terahertz imaging, Adv. Opt. Photon. 10, 843 (2018).

    Google Scholar 

  9. A. Rogalski, and F. Sizov, Terahertz detectors and focal plane arrays, Opto-Electron Rev. 19, 346-404 (2011).

  10. Q. Wu, T. D. Hewitt, and X. C. Zhang, Two-dimensional electro-optic imaging of THz beams, Appl. Phys. Lett. 69, 1026-1028 (1996).

    Article  Google Scholar 

  11. Y. J. Ding, and W. Shi, Efficient THz generation and frequency upconversion in GaP crystals, Solid-State Electron. 50, 1128-1136 (2006).

    Article  Google Scholar 

  12. W. Shi, Y. J. Ding, N. Fernelius, and F. Ken Hopkins, Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal, Appl. Phys. Lett. 88, 101101 (2006).

    Article  Google Scholar 

  13. Y. J. Ding, and W. Shi, Observation of THz to near-Infrared parametric conversion in ZnGeP2 crystal, Opt. Express 14, 8311-8316 (2006).

    Article  Google Scholar 

  14. M. J. Khan, J. C. Chen, Z. Liau, and S. Kaushik, Ultrasensitive, Room Temperature Detection of THz Radiation Using Nonlinear Parametric Conversion, IEEE J. Sel. Top. Quantum Electron. 17, 79-84 (2011).

    Article  Google Scholar 

  15. F. Qi, S. Fan, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, 10 aJ-level sensing of nanosecond pulse below 10 THz by frequency upconversion detection via DAST crystal: more than a 4 K bolometer, Opt. Lett. 39, 1294-1297 (2014).

    Article  Google Scholar 

  16. H. Minamide, J. Zhang, R. Guo, K. Miyamoto, S. Ohno, and H. Ito, High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal, Appl. Phys. Lett. 97, 121106 (2010).

    Article  Google Scholar 

  17. S. Fan, F. Qi, T. Notake, K. Nawata, T. Matsukawa, Y. Takida, and H. Minamide, Real-time terahertz wave imaging by nonlinear optical frequency up-conversion in a 4-dimethylamino-N′ -methyl-4′-stilbazolium tosylate crystal, Appl. Phys. Lett. 104, 101106 (2014).

    Article  Google Scholar 

  18. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd edn, pp.30-31. Marcel Dekker, Inc (2003).

  19. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate, Appl. Phys. Lett. 69, 13-15 (1996).

    Article  Google Scholar 

  20. M. Jazbinsek, L. Mutter, P. Gunter, Photonic Applications With the Organic Nonlinear Optical Crystal DAST, IEEE J. Sel. Top. Quantum Electron. 14, 1298 (2008)

    Google Scholar 

  21. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region, Opt. Express 18, 17306-17312 (2010).

    Google Scholar 

  22. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, J. Opt. Soc. Am. B: Opt. Phys. 23, 1822 (2006).

    Google Scholar 

  23. J. Liu, Y. Li, L. Ding, Y. Wang, T. Zhang, Q. Wang, and J. Fang, Fast Active-Quenching Circuit for Free-Running InGaAs(P)/InP Single-Photon Avalanche Diodes, IEEE J. Quantum Electron. 52, 1-6 (2016).

    Google Scholar 

  24. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency, Appl. Phys. Lett. 104, 081108-1 (2014).

    Google Scholar 

  25. P. Yuan, R. Sudharsanan, X. Bai, J. Boisvert, P. McDonald, E. Labios, M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, S. V. Duyne, G. Pauls, and S. Gaalema, 32 × 32 Geiger-mode LADAR cameras, Proc. SPIE (2010).

  26. M. A. Itzler, M. Entwistle, X. Jiang, M. Owens, K. Slomkowski, and S. Rangwala, Geiger-mode APD single-photon cameras for 3D laser radar imaging, in IEEE Aerospace Conference, 1-12 (IEEE, 2014).

  27. M. P. Buchin, Low-light imaging: ICCD, EMCCD, and sCMOS compete in low-light imaging, Laser Focus World 47, 7 (2011).

    Google Scholar 

  28. T. Taniuchi, S. Okada, and H. Nakanishi, Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application, J. Appl. Phys. 95, 5984-5988 (2004).

    Google Scholar 

  29. K. Takeya, K. Okimura, K. Oota, K. Kawase, and H. Uchida, Pump wavelength-independent broadband terahertz generation from a nonlinear optical crystal, Opt. Lett. 43, 4100-4103 (2018).

    Google Scholar 

  30. P. Liu, F. Qi, W. Li, Z. Liu, Y. Wang, W. Shi, and J. Yao, Theoretical Study of Organic Crystal-Based Terahertz-Wave Difference Frequency Generation and Up-Conversion Detection, J. Infrared Milli. Terahz. Waves 39, 1005-1014 (2018).

    Article  Google Scholar 

  31. Y. Takahashi, S. Onduka, S. Brahadeeswaran, M. Yoshimura, Y. Mori, and T. Sasaki, Development of DAST crystals with high damage tolerance, Opt. Mater. 30, 116-118 (2007).

    Article  Google Scholar 

  32. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal, Opt. Lett. 33, 252–254 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ying Ma from Shandong University for a revision in the language of the paper.

Funding

This work is supported in part by the Natural Science Foundation of Shandong Province (Grant No. ZR2017MF038), the Fundamental Research Funds of Shandong University (Grant No. 2016TB004), and the Opening Foundation of the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (SIMIT, CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzhen Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Liu, J., Fan, S. et al. Theoretical Exploration of Terahertz Single-Photon Detection and Imaging by Nonlinear Optical Frequency Up-Conversion. J Infrared Milli Terahz Waves 41, 1267–1279 (2020). https://doi.org/10.1007/s10762-020-00734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00734-x

Keywords

Navigation