Skip to main content
Log in

Influence of Field Effects on the Performance of InGaAs-Based Terahertz Radiation Detectors

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A detailed electrical characterization of high-performance bow-tie InGaAs-based terahertz detectors is presented along with simulation results. The local surface potential and tunnelling current were scanned over the surfaces of the detectors by means of Kelvin probe force microscopy (KPFM) and scanning tunnelling microscopy (STM), which also enabled the determination of the Fermi level. Current-voltage curves were measured and modelled using the Synopsys Sentaurus TCAD package to gain deeper insight into the processes involved in detector operation. In addition, we performed finite-difference time-domain (FDTD) simulations to reveal features related to changes in the electric field due to the metal detector contacts. The investigation revealed that field-effect-induced conductivity modulation is a possible mechanism contributing to the high sensitivity of the studied detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Yasui, A. Nishimura, T. Suzuki, K. Nakayama, S. Okajima, Rev. Sci. Instrum. 77(6), 6102 (2006). doi:10.1063/1.2206770. http://aip.scitation.org/doi/10.1063/1.2206770.

  2. I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, J. Trontelj, Sensors 16(4), 432 (2016). doi:10.3390/s16040432. http://www.mdpi.com/1424-8220/16/4/432.

  3. W. Knap, Y. Deng, S. Rumyantsev, J.Q. Lü, M.S. Shur, C.A. Saylor, L.C. Brunel, Appl. Phys. Lett. 80(18), 3433 (2002). doi:10.1063/1.1473685. http://scitation.aip.org/content/aip/journal/apl/80/18/10.1063/1.1473685.

  4. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, M.S. Shur, Appl. Phys. Lett. 89(25), 253511 (2006). doi:10.1063/1.2410215. http://scitation.aip.org/content/aip/journal/apl/89/25/10.1063/1.2410215.

  5. S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevicius, I. Kasalynas, G. Valusis, M. Mittendorff, S. Winnerl, V. Krozer, H.G. Roskos, IEEE T. Microw. Theory Techn. 60(12), 3834 (2012). doi:10.1109/TMTT.2012.2221732. http://ieeexplore.ieee.org/document/6353608/.

  6. A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolìvar, D. Glaab, H.G. Roskos, J. Appl. Phys. 105(11), 114511 (2009). doi:10.1063/1.3140611. http://scitation.aip.org/content/aip/journal/jap/105/11/10.1063/1.3140611.

  7. D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A. Lisauskas, H. Roskos, K. Köhler, Electron. Lett. 40, 631 (2004). doi:10.1049/el:20040412. http://digital-library.theiet.org/content/journals/10.1049/el_20040412.

  8. D. Seliuta, I. Kašalynas, V. Tamošiūnas, S. Balakauskas, Z. Martūnas, S. Ašmontas, G. Valušis, A. Lisauskas, H. Roskos, K. Köhler, Electron. Lett. 42, 825 (2006). http://digital-library.theiet.org/content/journals/10.1049/el_20061224.

  9. I. Kasalynas, D. Seliuta, R. Simniskis, V. Tamosiunas, K. Kohler, G. Valusis, Electron. Lett. 45(16), 833 (2009). doi:10.1049/el.2009.0336.

  10. I. Kasalynas, R. Venckevicius, G. Valusis, IEEE Sens. J. 13(1), 50 (2013). doi:10.1109/JSEN.2012.2223459. http://ieeexplore.ieee.org/document/6328239/.

  11. L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, K. Köhler, Appl. Phys. Lett. 99(13), 131101 (2011). doi:10.1063/1.3641907. http://scitation.aip.org/content/aip/journal/apl/99/13/10.1063/1.3641907.

  12. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66(1), 1 (2011). doi:10.1016/j.surfrep.2010.10.001. http://www.sciencedirect.com/science/article/pii/S0167572910000841.

  13. C.T. Lee, K.L. Jaw, C.D. Tsai, Solid State Electron. 42(5), 871 (1998). doi:10.1016/S0038-1101(98)00086-0. http://www.sciencedirect.com/science/article/pii/S0038110198000860.

  14. J. Wu, C. Chang, K. Lin, E. Chang, J. Chen, C. Lee, J. Electron. Mater. 24(2), 79 (1995). doi:10.1007/BF02659625.

  15. W.E. Martinez, G. Gregori, T. Mates, Thin Solid Films 518(10), 2585 (2010). doi:10.1016/j.tsf.2009.07.187. http://www.sciencedirect.com/science/article/pii/S0040609009013376.

  16. W. Melitz, J. Shen, S. Lee, J.S. Lee, A.C. Kummel, R. Droopad, T.Y. Edward, J. of Appl. Phys. 108(2), 023711 (2010). doi:10.1063/1.3462440.

  17. I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, G. Valušis, J. Appl. Phys. 110(11), 114505 (2011). doi:10.1063/1.3658017. http://scitation.aip.org/content/aip/journal/jap/110/11/10.1063/1.3658017.

  18. V. Balynas, A. Krotkus, A. Stalnionis, A. Gorelionok, N. Shmidt, J. Tellefsen, Appl. Phys. A - Mater. 51(4), 357 (1990). doi:10.1007/BF00324321.

  19. S. Paul, J.B. Roy, P.K. Basu, J. Appl. Phys. 69(2), 827 (1991). doi:10.1063/1.348919. http://scitation.aip.org/content/aip/journal/jap/69/2/10.1063/1.348919.

  20. F. Teppe, W. Knap, D. Veksler, M.S. Shur, A.P. Dmitriev, V.Y. Kachorovskii, S. Rumyantsev, Appl. Phys. Lett. 87(5), 052107 (2005). doi:10.1063/1.2005394. http://scitation.aip.org/content/aip/journal/apl/87/5/10.1063/1.2005394.

  21. Sentaurus device user guide, version k-2015.06, Mountain View, California: Synopsys, Inc., 2015: Chapter 2, section “Physical model parameters”.

  22. D. Chattopadhyay, S.K. Sutradhar, B.R. Nag, J. Phys. C Solid State 14(6), 891 (1981). doi:10.1088/0022-3719/14/6/014. http://stacks.iop.org/0022-3719/14/i=6/a=014.

  23. C. Canali, G. Majni, R. Minder, G. Ottaviani, IEEE T. Electron. Dev. 22(11), 1045 (1975). doi:10.1109/T-ED.1975.18267.

  24. D.M. Caughey, R.E. Thomas, Proceedings of the IEEE 55(12), 2192 (1967). doi:10.1109/PROC.1967.6123. http://ieeexplore.ieee.org/document/1448053/.

  25. J. Marczewski, W. Knap, D. Tomaszewski, M. Zaborowski, P. Zagrajek, J. Appl. Phys. 118(10), 104502 (2015). doi:10.1063/1.4929967. http://scitation.aip.org/content/aip/journal/jap/118/10/10.1063/1.4929967.

Download references

Acknowledgements

The authors would like to thank Dr. Klaus Köhler (Fraunhofer-Institut für Angewandte Festkörperphysik, Freiburg, Germany) for providing InGaAs sample II3196. This work was supported by the Research Council of Lithuania (project LAT 04/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linas Minkevičius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minkevičius, L., Tamošiūnas, V., Kojelis, M. et al. Influence of Field Effects on the Performance of InGaAs-Based Terahertz Radiation Detectors. J Infrared Milli Terahz Waves 38, 689–707 (2017). https://doi.org/10.1007/s10762-017-0382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0382-1

Keywords

Navigation