Skip to main content
Log in

Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, and T. Fujiwara, Application of Continuously Frequency-Tunable 0.4 THz Gyrotron to Dynamic Nuclear Polarization for 600 MHz Solid-State NMR // J. Infrar. Millim. Terahz. Waves, 33, 745–755 (2012).

    Article  Google Scholar 

  2. Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa,M. Toda, H. Akutsu, T. Fujiwara, Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR, Physical Chemistry Chemical Physics, 12 (2010) 5799−5803.

    Article  Google Scholar 

  3. T Suehara, A Miyazaki, A Ishida, T Namba, S Asai, T Kobayashi, H Saito, M. Yoshida, T. Idehara, I. Ogawa, S. Kobayashi, Y. Urushizaki and S. Sabchevski (2010) Probing the Energy Structure of Positronium with a 203 GHz Fabry−Perot Cavity. Journal of Physics: Conference Series, 199:012002

    Google Scholar 

  4. A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Urushizaki, S. Sabchevski, New Experiment for the First Direct Measurement of Positronium Hyperfine Splitting with sub−THz Light, Materials Science Forum, 666 (2011) 133−137.

    Article  Google Scholar 

  5. J. Goulon, A. Rogalev, F.Wilhelm, G. Goujon, X-Ray Detected Magnetic Resonance: A New Spectroscopic Tool, In E. Beaurepaire, H. Bulou, F. Scheurer, J.−P. Kappler (Eds.), Magnetism and Synchrotron Radiation: New Trends, Springer Proceedings in Physics, 133 (1st Edition, 2010, XXI, 421 p. 207 illus.)

  6. T. Idehara, K. Kosuga, La Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, Continuously Frequency Tunable High Power Sub-THz Radiation Source−Gyrotron FU CW VI for 600 MHz DNP−NMR Spectroscopy, J Infrared Milli Terahz Waves, 31 (2010) 775–790.

    Article  Google Scholar 

  7. I. Ogawa, T. Idehara et al. High Quality Operation of a Submillimeter Wave Gyrotron for Plasma Diagnostics Application, Journal of Plasma and Fusion Research Series, 5 (2002) 205 – 209.

    Google Scholar 

  8. T. Idehara, A. Kuleshov, K. Ueda, E. Khutoryan, Power-Stabilization of High Frequency Gyrotrons Using a Double PID Feedback Control for Applications to High Power THz Spectroscopy, J Infrared Milli Terahz Waves, 35, 159-168 (2014).

    Article  Google Scholar 

  9. Bajaj, Vikram S., Melissa K. Hornstein, Kenneth E. Kreischer, Jagadishwar R. Sirigiri, Paul P. Woskov, Melody L. Mak-Jurkauskas, Judith Herzfeld, Richard J. Temkin, and Robert G. Griffin. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR, Journal of Magnetic Resonance, 189 (2007) 251–279.

    Article  Google Scholar 

  10. A. C. Torrezan, S.-T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, R. G. Griffin, Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance, IEEE Trans. Plasma Sci., 38 (2010) 1150−1159.

    Article  Google Scholar 

  11. M. Araki, PID control, Control systems, robotics and automation - Vol. II - PID Control, 2010

  12. I. Ogawa, R. Ikeda, Y. Tatematsu, T. Idehara and T. Saito, Stabilization of gyrotrons output power using feedback control, 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMWTHz), Wollongong, Australia, Sep. 2012.

  13. A. Fernandez, M. Glyavin, R. Martin et al. Some opportunities to control and stabilize frequency of gyrotrons // Proc. of 4th Int. Conf. IVEC, Seoul, 2003, p. 172.

  14. Sh Tsimring, Electron Beams and Microwave Vacuum Electronics, John Wiley & Sons, Hoboken, New Jersey, (2007).

    Google Scholar 

  15. M.I. Petelin and A.S. Sedov, Frequency response of voltage-modulated gyrotrons // Terahertz Science and Technology, vol. 2, No. 3, p. 102-104, September 2009.

Download references

Acknowledgements

This work was partially supported by Grant in Aid for Challenging Exploratory Research (Subject No. 25630142) from Japan Society for Promotion of Science (JSPS) and also by SENTAN from JST. This work was performed under Cooperative Research Program of Institute for Protein Research, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Khutoryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutoryan, E.M., Idehara, T., Kuleshov, A.N. et al. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage. J Infrared Milli Terahz Waves 35, 1018–1029 (2014). https://doi.org/10.1007/s10762-014-0105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-014-0105-9

Keywords

Navigation