Skip to main content
Log in

Review of Terahertz Technology Readiness Assessment and Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Technological progress in Terahertz (THz) instrumentation in recent years has produced commercial THz systems with excellent performance, smaller footprint, easier to use operation and more reliable than their homemade laboratory predecessors. Form factor, weight, and data rate are, perhaps, the parameters that have shown the highest improvements in recent years. These parameters also have a major impact on practical application outside the laboratory environment. However, gaps still exists between proof of concepts demonstrated in the laboratory and application requirements in a real environment. The readiness of a technology can be assessed using the Technology Readiness Level (TRL) criterion, which considers nine readiness levels starting from basic concepts at TRL=1 up to full deployment at TRL=9. Applications of THz technology in spectroscopic characterization score high in TRL (7-9) because most of the progress of THz technology has been mainly focused in developing THz instrumentation for spectroscopy. Applications of THz for non-destructive evaluation applications score lower (TRL 5-6) due to higher requirements in terms of performance, especially data rate and form factor in imaging applications. Applications in the medical field have been studied with promising results but they are still in early stages of development, thus, TRL is low (1-4). The progress in THz technology is generating systems with better performance (faster acquisition rates, higher signal-to-noise ratio, bandwidth), broader availability of form factors and configurations, and tighter integration with particular applications. This progress will reduce the gap between the capabilities of the technology and the high-demanding requirements of applications in environments such as quality control and in-line production control in the manufacturing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Siegel, P. H. (2003). THz technology: An overview. International Journal of High Speed Electronics and Systems, 13(2), 351–394.

    Article  Google Scholar 

  2. Bradley, D. J., Durrant, A., O'Neill, F., & Sutherland, B. (1969). Picosecond Pulses From Mode-Locked Dye Laser. Physics Letters A, 30(9), 535–536.

    Article  Google Scholar 

  3. Duguay, M. A., Shapiro, S. L., & Rentzepis, P. M. (1967). Spontaneous Appearance of Picosecond Pulses in Ruby and Nd: Glass Lasers. Physical Review Letters, 19(18), 1014–1016.

    Article  Google Scholar 

  4. Auston, D. H., Glass, A. M., & Ballman, A. A. (1972). Optical Rectification by Impurities in Polar Crystals. Physical Review Letters, 28(14), 897–900.

    Article  Google Scholar 

  5. Yang, K. H., Richards, P. L., & Shen, Y. R. (1971). Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3. Applied Physics Letters, 19(9), 320–323.

    Article  Google Scholar 

  6. Stone, J., Duguay, M. A., Damen, T. C., Burrus, C. A., Dentai, A. G., & Wiesenfeld, J. M. (1980). Picosecond Pulses From an Optically Pumped InGaAsP-Epilayer-Film Ultrashort-cavity Laser. Journal of the Optical Society of America, 70(11), 1404–1405.

    Google Scholar 

  7. Auston, D. H., Johnson, A. M., Smith, P. R., & Bean, J. C. (1980). Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors. Applied Physics Letters, 37(4), 371–373.

    Article  Google Scholar 

  8. Fattinger, C., & Grischkowsky, D. R. (1989). Terahertz Beams. Applied Physics Letters, 54(6), 490–492.

    Article  Google Scholar 

  9. Zhang, X.-C., Jin, Y., & Ma, X. F. (1992). Coherent measurement of THz optical rectification from electro-optic crystals. Applied Physics Letters, 61(23), 2764–2766.

    Article  Google Scholar 

  10. Xu, L., Zhang, X.-C., & Auston, D. H. (1992). Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Applied Physics Letters, 61(15), 1784–1786

    Article  Google Scholar 

  11. Wu, Q., & Zhang, X.-C. (1995). Free-Space Electro-optic Sampling of Terahertz Beams. Applied Physics Letters, 67(24), 3523–3525.

    Article  Google Scholar 

  12. Hu, B. B., & Nuss, M. C. (1995). Imaging with terahertz waves. Optics Letters, 20(16), 1716.

    Article  Google Scholar 

  13. Mittelman, D. M., Jacobsen, R. H., & Nuss, M. C. (1996). T-Ray Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2(3), 679–696.

    Article  Google Scholar 

  14. Vitiello, M. S., & Tredicucci, A. (2011). Tunable Emission in THz Quantum Cascade Lasers. IEEE Transactions on Terahertz Science and Technology, 1(1), 76–84.

    Article  Google Scholar 

  15. Gorshunov, B., Volkov, A., Spektor, I., Prokhorov, A., Mukhin, A., Dressel, M., et al. (2005). Terahertz BWO-spectrosopy. International Journal of Infrared and Millimeter Waves, 26(9), 1217–1240.

    Article  Google Scholar 

  16. Brown, E. R., McIntosh, K. A., Nichols, K. B., & Dennis, C. L. (1995). Photomixing up to 3.8 THz in low-temperature-grown GaAs. Applied Physics Letters, 66(3), 285-287.

    Article  Google Scholar 

  17. Tani, M., Morikawa, O., Matsuura, S., & Hangyo, M. (2005). Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers. Semiconductor Science and Technology, 20(7), S151–S163.

    Article  Google Scholar 

  18. Stanze, D., Deninger, A., Roggenbuck, A., Schindler, S., Schlak, M., & Sartorius, B. (2011). Compact cw terahertz spectrometer pumped at 1.5 μm wavelength. Journal of Infrared, Millimeter, and Terahertz Waves, 32(2), 225-232.

    Article  Google Scholar 

  19. Khurgin, J. B. (1994). Optical Rectification and Terahertz Emission in Semiconductors Excited Above the Band-Gap. Journal of the Optical Society of America B, 11(12), 2492–2501.

    Article  Google Scholar 

  20. Li, M., Sun, F. G., Wagoner, G. A., Alexander, M., & Zhang, X.-C. (1995). Measurement and analysis of terahertz radiation from bulk semiconductors. Applied Physics Letters, 67(1), 25–27.

    Article  Google Scholar 

  21. Lü, J. Q., & Shur, M. S. (2001). Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias. Applied Physics Letters, 78(17), 2587.

    Article  Google Scholar 

  22. Ohno, S., Hamano, A., Miyamoto, K., Suzuki, C., & Ito, H. (2009). Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source. Journal of the European Optical Society: Rapid Publications, 4.

  23. Mittelman, D. M., Jacobsen, R. H., Neelamani, R., Baraniuk, R. G., & Nuss, M. C. (1998). Gas sensing using terahertz time-domain spectroscopy. Applied Physics B: Lasers and Optics, 67, 379–390.

    Article  Google Scholar 

  24. van Exter, M., Fattinger, C., & Grischkowsky, D. R. (1989). Terahertz time-domain spectroscopy of water vapor. Optics Letters, 14(20), 1128–1130.

    Article  Google Scholar 

  25. Flanders, B. N., Cheville, R. A., Grischkowsky, D. R., & Scherer, N. F. (1996). Pulsed terahertz transmission spectroscopy of liquid CHCl3, CCl4, and their mixtures. Journal of Physical Chemistry, 100(29), 11824–11835.

    Article  Google Scholar 

  26. Dai, J, Liu, J, & Zhang, X-C (2011). Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma. IEEE J. Sel. Topics Quantum Electron. 17, 183–190

    Article  Google Scholar 

  27. Cook, D J, & Hochstrasser, R M (2000). Intense terahertz pulses by four-wave rectification in air. Opt. Lett., 25, 1210–1212

    Article  Google Scholar 

  28. Chen, J., Chen, Y., Zhao, H., Bastiaans, G. J., & Zhang, X.-C. (2007). Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. Optics Express, 15(19), 12060–12067.

    Article  Google Scholar 

  29. Shen, Y. C., Taday, P. F., & Kemp, N. C. (2004). Terahertz spectroscopy of explosive materials. In R. Appleby, J. M. Chamberlain, & K. A. Krapels (Eds.), (Vol. 5619, pp. 82–89). Presented at the Terahertz Spectroscopy and Applications 11.

  30. Baker, C., Lo, T., Tribe, W. R., Cole, B. E., Hogbin, M., & Kemp, M. C. (2007). Detection of Concealed Explosives at a Distance Using Terahertz Technology (Vol. 95, pp. 1559–1565). Presented at the Proceedings of the IEEE.

  31. Zhong, H., Redo-Sanchez, A., & Zhang, X.-C. (2007). Standoff sensing and imaging of explosive related chemical and bio-chemical materials using THz-TDS. International Journal of High Speed Electronics and Systems, 17(2), 239–249.

    Article  Google Scholar 

  32. Hoshina, H., Sasaki, Y., Hayashi, A., Otani, C., & Kawase, K. (2009). Noninvasive Mail Inspection System with Terahertz Radiation. Applied Spectroscopy, 63(1), 81–86.

    Article  Google Scholar 

  33. Gui-feng, L., Fhong-wei, Z., Min, G., & Wen-feng, W. (2008). Application of terahertz time domain spectroscopy to explosive and illegal drug. Spectroscopy and Spectral Analysis, 28(5), 966–969.

    Google Scholar 

  34. Baker, C., Tribe, W. R., Lo, T., Cole, B. E., Chandler, S., & Kemp, M. C. (2005). People screening using terahertz technology. In R. J. Hwu, D. L. Woolard, & M. J. Rosker (Eds.), (Vol. 5790, pp. 1–10). Presented at the Terahertz Spectroscopy and Applications 11.

  35. Shen, Y. C., & Taday, P. F. (2008). Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet. IEEE Journal of Selected Topics in Quantum Electronics, 14(2), 407–415.

    Article  Google Scholar 

  36. Taday, P. F., Bradley, I. V., Arnone, D. D., & Pepper, M. (2003). Using Terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. Journal of Pharmaceutical Sciences, 92(4), 831–838.

    Article  Google Scholar 

  37. Wu, H., Heilweil, E. J., Hussain, A. S., & Khan, M. A. (2007). Process analytical technology (PAT): Effects of instrumental and compositional variables on terahertz spectral data quality to characterize pharmaceutical materials and tablets. International Journal of Pharmaceutics, 343, 148–158.

    Article  Google Scholar 

  38. May, R. K., Evans, M. J., Zhong, S., Warr, I., Gladden, L. F., Shen, Y., & Zeitler, J. A. (2011). Terahertz In-Line Sensor for Direct Coating Thickness Measurement of Individual Tablets During Film Coating in Real-Time. Journal of Pharmaceutical Sciences, 100(4), 1535–1544.

    Article  Google Scholar 

  39. Zhong, S., Shen, Y.-C., Ho, L., May, R. K., Zeitler, J. A., Evans, M., et al. (2011). Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Optics and Lasers in Engineering, 49(3), 361–365.

    Article  Google Scholar 

  40. Fei, S., & Yi-bin, Y. (2009). Applications of Terahertz Spectroscopy and Imaging Techniques in Food Safety Inspection. Spectroscopy and Spectral Analysis, 29(6), 1445–1449.

    Google Scholar 

  41. Hua, Y., & Zhang, H. (2010). Qualitative and Quantitative Detection of Pesticides With Terahertz Time-Domain Spectroscopy. IEEE Transactions on Microwave Theory and Techniques, 58(7, Part 2, SI), 2064–2070.

    Article  Google Scholar 

  42. Jördens, C., & Koch, M. (2008). Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Optical Engineering, 47(3), 037003.

    Article  Google Scholar 

  43. Redo-Sanchez, A., Salvatella, G., Galceran, R., Roldós, E., García-Reguero, J.-A., Castellari, M., & Tejada, J. (2011). Assessment of terahertz spectroscopy to detect antibiotic residues in food and feed matrices. The Analyst, 136(8), 1733–1738.

    Article  Google Scholar 

  44. Ung, B., Fischer, B. M., Ng, B. W., & Abbott, D. (2007). Towards quality control of food using terahertz (Vol. 6799, pp. 67991E–1–4). Presented at the Proceedings of SPIE.

  45. Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., et al. (2010). Terahertz imaging: applications and perspectives. Applied Optics, 49(19), E48–57.

    Article  Google Scholar 

  46. Kawase, K., Shibuya, T., Hayashi, S., & Suizu, K. (2010). THz imaging techniques for nondestructive inspections. Comptes Rendus Physique, 11(7-8), 510–518.

    Google Scholar 

  47. White, J. S., Fichter, G., Chernovsky, A., Whitaker, J. F., Das, D., Pollock, T. M., & Zimdars, D. (2009). Time Domain Terahertz Non-Destructive Evaluation of Aeroturbine Blade Thermal Barrier Coatings. In D. O. Thompson & D. E. Chimenti (Eds.), (Vol. 1096, pp. 434–439). Presented at the Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B.

  48. Wietzke, S., Joerdens, C., Krumbholz, N., Baudrit, B., Bastian, M., & Koch, M. (2007). Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints. Journal of the European Optical Society: Rapid Publications, 2.

  49. Abraham, E., Younus, A., Delagnes, J. C., & Mounaix, P. (2010). Non-invasive investigation of art paintings by terahertz imaging. Applied Physics A, 100(3), 585–590.

    Article  Google Scholar 

  50. Groves, R. M., Pradarutti, B., Kouloumpi, E., Osten, W., & Notni, G. (2009). 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT and E International, 42(6), 543–549.

    Article  Google Scholar 

  51. Jackson, J. B., Mourou, M., Whitaker, J. F., Duling, I. N., Williamson, S. L., Menu, M., & Mourou, G. A. (2008). Terahertz imaging for non-destructive evaluation of mural paintings. Optics Communications, 281(4), 527–532.

    Article  Google Scholar 

  52. Karpowicz, N., Redo-Sanchez, A., Zhong, H., Li, X., Xu, J., & Zhang, X.-C. (2005). Continuous-wave terahertz imaging for non-destructive testing applications (Vol. 1, pp. 329–330). Presented at the The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005.

  53. Shibuya, T., Suzuki, T., Suizu, K., & Kawase, K. (2011). Non-destructive Characterization of Soot in Exhaust Filters Using Millimeter-wave Imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 32(5), 716–721.

    Article  Google Scholar 

  54. Stoik, C. D., Bohn, M., & Blackshire, J. (2010). Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT and E International, 43(2), 106–115.

    Article  Google Scholar 

  55. Mogensen, M., & Jemec, G. B. E. (2007). Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: A review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatologic Surgery, 33(10), 1158–1174.

    Article  Google Scholar 

  56. Pickwell, E., Cole, B. E., Fitzgerald, A. J., Pepper, M., & Wallace, V. P. (2004). In vivo study of human skin using pulsed terahertz radiation. Physics in Medicine and Biology, 49(9), 1595–1607.

    Article  Google Scholar 

  57. Taylor, Z. D., Singh, R. S., Culjat, M. O., Suen, J. Y., Grundfest, W. S., Lee, H., & Brown, E. R. (2008). Reflective terahertz imaging of porcine skin burns. Optics Letters, 33(11), 1258–1260.

    Article  Google Scholar 

  58. Wallace, V. P., Fitzgerald, A. J., Pickwell, E., Pye, R. J., Taday, P. F., Flanagan, N., & Ha, T. (2006). Terahertz pulsed spectroscopy of human basal cell carcinoma. Applied Spectroscopy, 60(10), 1127–1133.

    Article  Google Scholar 

  59. Wilmink, G. J., Ibey, B. L., Tongue, T., Schulkin, B., Laman, N., Peralta, X. G., et al. (2011). Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. Journal of Biomedical Optics, 16(4), 047006.

    Article  Google Scholar 

  60. Technology Readiness Levels. NASA. Available: http://esto.nasa.gov/files/trl_definitions.pdf

  61. Technology Readiness Levels. Department of Defense. Available: https://acc.dau.mil/CommunityBrowser.aspx?id=24699

  62. Oda, N., Ishi, T., Kurashina, S., Sudou, T., Miyoshi, M., Morimoto, T., et al. (2013). Palm-size and real-time terahertz imager, and its application to development of terahertz sources. In SPIE Defense, Security, and Sensing (pp. 871603-871603). International Society for Optics and Photonics.

  63. Oden, J., Meilhan, J., Lalanne-Dera, J., Roux, J. F., Garet, F., Coutaz, J. L., & Simoens, F. (2013). Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature. Optics Express, 21(4), 4817-4825.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. X.-C. Zhang, Prof. Martin Koch, Dr. Gerald Wilmink, Dr. Emmanuel Abraham, and Dr. Christopher Stoik to give their permission to reproduce part of their results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Redo-Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redo-Sanchez, A., Laman, N., Schulkin, B. et al. Review of Terahertz Technology Readiness Assessment and Applications. J Infrared Milli Terahz Waves 34, 500–518 (2013). https://doi.org/10.1007/s10762-013-9998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-9998-y

Keywords

Navigation