Skip to main content
Log in

Development Process of a Praxeology for Supporting the Teaching of Proofs in a CAS Environment Based on Teachers’ Experience in a Professional Development Course

  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

This paper presents the development process of a praxeology (theory-of-practice) for supporting the teaching of proofs in a CAS environment. The characteristics of the praxeology were elaborated within the frame of a professional development course for teaching analytic geometry with CAS. The theoretical framework draws on Chevallard’s anthropological approach to the didactics of mathematics and Duval’s analysis of transformations within and between registers of semiotic representations. The teachers (n = 43) were asked (a) to draw conjectures regarding unfamiliar behavior of tangents to hyperbola, before and after exploration using given slider bars; and (b) to prove their conjectures after being exposed to the algebraic expressions underlying the slider bars. The teachers were also asked twice, before and after (b), to rate the need to ask students for an algebraic proof in similar tasks. Three types of proofs are presented in an increasing order of the level of mathematical maturity exhibited in each proof. Based on results coming from the empirical study, we propose a praxeology for preparing teachers to teach proofs consisting of Task design, Techniques, and Didactical discourse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arcavi, A. (1994). Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24–35.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection on instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(1), 245–274.

    Article  Google Scholar 

  • Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics teaching and learning at post-secondary level. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1011–1050). Reston, VA: NCTM.

    Google Scholar 

  • Arzarello, F., Bosch, M., Gascón, J., & Sabena, C. (2008). The ostensive dimension through the lenses of two didactic approaches. ZDM Mathematics Education, 40(2), 179–188.

    Article  Google Scholar 

  • Ayoub, B. A. (2007). The director circle of a central conic section. Mathematics and Computer Education, 41(2), 136–142.

    Google Scholar 

  • Bailey, D. H., & Borwein, J. M. (2005). Experimental mathematics: Examples, methods and implications. Notices of AMS, 52(5), 502–514.

    Google Scholar 

  • Barbé, J., Bosch, M., Espinoza, L., & Gascón, J. (2005). Didactic restrictions on the teacher’s practice: The case of limits of functions in Spanish high schools. Educational Studies in mathematics, 59(1–3), 235–268.

    Article  Google Scholar 

  • Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in mathematics, 24(4), 359–387.

    Article  Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Dana-Picard, T., Zehavi, N., & Mann, G. (2012). From conic intersections to toric intersections: The case of the isoptic curves of an ellipse. The Montana Mathematics Enthusiast 8(3), to appear January 2012.

  • Drijvers, P. (2003). Learning algebra in a computer algebra environment. Utrecht, The Netherlands: Freundenthal Institute.

    Google Scholar 

  • Duval, R. (2002). Proof understanding in mathematics: What ways for students? Plenary paper at the International conference on mathematics: Understanding proving and proving to understand. Taipei, November 2002. Retrieved June 5, 2011 from: http://140.122.140.4/~cyc/_private/mathedu/me1/me1_2002_1/duval.doc (html version).

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131.

    Article  Google Scholar 

  • Elia, A., Panaoura, A., Gagatsis, A., Gravvani, K., & Spyrou, P. (2008). Exploring different aspects of the understanding of functions: Toward a four-facet model. Canadian Journal of Science, Mathematics and Technology Education, 8(1), 49–69.

    Article  Google Scholar 

  • Hadas, N., & Hershkowitz, R. (1999). The role of uncertainty in constructing and proving in computerized environments. In O. Zaslavsky (Ed.), Proceedings of the 23rd PME Conference, 3, 57–64.

  • Hanna, G. (1989). Proofs that prove and proofs that explain. In G. Vernaud, J. Rogalski, & M. Artigue (Eds.), Proceedings of the 13th Conference of the international group for the psychology of mathematics education, II, 45–51, Paris.

  • Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44(1–2), 5–23.

    Article  Google Scholar 

  • Hanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. ZDM Mathematics Education, 40(3), 345–353.

    Article  Google Scholar 

  • Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper and pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11(2), 205–263.

    Article  Google Scholar 

  • Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-Geometry. International Journal of Computers in Mathematical learning, 6(3), 283–317.

    Article  Google Scholar 

  • Lagrange, J. B. (2005a). Using symbolic calculators to study mathematics. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 113–136). New York: Springer.

    Chapter  Google Scholar 

  • Lagrange, J. B. (2005b). Curriculum, classroom practices, and tool design in the learning of functions through technology-aided experimental approaches. International Journal of Computers in Mathematical learning, 10(2), 143–189.

    Article  Google Scholar 

  • Mann, G., Dana-Picard, T., & Zehavi, N. (2007). Technological discourse on CAS-based operative knowledge. International Journal for Technology in Mathematics Education, 14(3), 113–120.

    Google Scholar 

  • Mariotti, A. M. (2001). Justifying and proving in the Cabri environment. International Journal of Computers in Mathematical learning, 6(3), 257–281.

    Article  Google Scholar 

  • Monaghan, J. (2007). Computer algebra, instrumentation and the anthropological approach. International Journal for Technology in Mathematics Education, 14(2), 63–72.

    Google Scholar 

  • Spain, B. (1963). Analytical geometry. Oxford: Pergamon Press.

    Google Scholar 

  • Srinivasan, V. K. (2002). Director circle of conic sections. International Journal of Mathematical Education in Science and Technology, 33(5), 791–800.

    Article  Google Scholar 

  • Trouche, L. (2005). Using symbolic calculators to study mathematics. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 137–162). New York: Springer.

    Chapter  Google Scholar 

  • Yerushalmy, M. (1993). Generalization in geometry. In J. L. Schwartz, M. Yerushalmy, & B. Wilson (Eds.), The geometric supposer, what is it a case of? (pp. 57–84). Mahwah, NJ: Laurence Erlbaum.

    Google Scholar 

  • Zehavi, N. (2004). Symbol sense with a symbolic-graphical system: A story in three rounds. Journal of Mathematical Behavior, 23(2), 183–203.

    Article  Google Scholar 

  • Zehavi, N., & Mann, G. (1999). The expressive power afforded by a solving tool: How long did Diophantus live? International Journal of Computer Algebra in Mathematics Education, 6(4), 249–266.

    Google Scholar 

  • Zehavi, N., & Mann, G. (2003). Task design in a CAS environment: Introducing (in)equations. In J. Fey (Ed.), Computer algebra in secondary education (pp. 173–191). Reston VA: NCTM.

    Google Scholar 

  • Zehavi, N., & Mann, G. (2005). Instrumented techniques and reflective thinking in analytic geometry. The Montana Mathematics Enthusiast, 2(2), 83–92.

    Google Scholar 

Download references

Acknowledgment

The authors thank the editors-in-charge and the reviewers for their encouragement and constructive comments in shaping this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Zehavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehavi, N., Mann, G. Development Process of a Praxeology for Supporting the Teaching of Proofs in a CAS Environment Based on Teachers’ Experience in a Professional Development Course. Tech Know Learn 16, 153–181 (2011). https://doi.org/10.1007/s10758-011-9181-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-011-9181-2

Keywords

Navigation