Skip to main content

Advertisement

Log in

HIF-1α Pathway Orchestration by LCN2: A Key Player in Hypoxia-Mediated Colitis Exacerbation

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Availability of Data and Materials

The data that supports the findings of this study are available on request from the corresponding author.

References

  1. Upadhyay, K.G., D.C. Desai, T.F. Ashavaid, and A.J. Dherai. 2023. Microbiome and metabolome in inflammatory bowel disease. Journal of Gastroenterology and Hepatology 38 (1): 34–43. https://doi.org/10.1111/jgh.16043.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y.Z., and Y.Y. Li. 2014. Inflammatory bowel disease: Pathogenesis. World Journal of Gastroenterology 20 (1): 91–99. https://doi.org/10.3748/wjg.v20.i1.91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seyedian, S.S., F. Nokhostin, and M.D. Malamir. 2019. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of Medicine and Life 12 (2): 113–122. https://doi.org/10.25122/jml-2018-0075.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Franco, J.V.A., L.I. Garegnani, G.V. Oltra, M.I. Metzendorf, L.F. Trivisonno, N. Sgarbossa, D. Ducks, K. Heldt, R. Mumm, B. Barnes, and C. Scheidt-Nave. 2022. Long-Term Health Symptoms and Sequelae Following SARS-CoV-2 Infection: An Evidence Map. International Journal of Environmental Research And Public Health 19 (16): 9915. https://doi.org/10.3390/ijerph19169915.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guan, Q. 2019. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. Journal of Immunology Research 2019: 7247238. https://doi.org/10.1155/2019/7247238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song, K., Y. Zhang, Q. Ga, Z. Bai, and R.L. Ge. 2020. High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sciences 252: 117633. https://doi.org/10.1016/j.lfs.2020.117633.

    Article  CAS  PubMed  Google Scholar 

  7. Russel, M.G., and R.W. Stockbrügger. 2001. Epidemiologische ontwikkelingen en inzichten met betrekking tot chronische inflammatoire darmziekten [Epidemiological developments and insights in chronic inflammatory bowel diseases]. Nederlands tijdschrift voor geneeskunde 145 (30): 1448–1452.

    CAS  PubMed  Google Scholar 

  8. Burtscher, J., R.T. Mallet, M. Burtscher, and G.P. Millet. 2021. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Research Reviews 68: 101343. https://doi.org/10.1016/j.arr.2021.101343.

    Article  CAS  PubMed  Google Scholar 

  9. Lun, J., H. Zhang, J. Guo, M. Yu, and J. Fang. 2023. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Frontiers in Pharmacology 14: 1045997. https://doi.org/10.3389/fphar.2023.1045997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singhal, R., and Y.M. Shah. 2020. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. The Journal of Biological Chemistry 295 (30): 10493–10505. https://doi.org/10.1074/jbc.REV120.011188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caio, G., L. Lungaro, F. Caputo, E. Zoli, F. Giancola, G. Chiarioni, R. De Giorgio, and G. Zoli. 2021. Nutritional Treatment in Crohn’s Disease. Nutrients 13 (5): 1628. https://doi.org/10.3390/nu13051628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scrimshaw, N.S., and E.B. Murray. 1988. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. The American Journal of Clinical Nutrition 48 (4 Suppl): 1079–1159. https://doi.org/10.1093/ajcn/48.4.1142.

    Article  CAS  PubMed  Google Scholar 

  13. Ballester Ferré, M.P., M.M. Boscá-Watts, and M. Mínguez Pérez. 2018. Crohn’s disease. Enfermedad de Crohn. Medicina Clinica 151 (1): 26–33. https://doi.org/10.1016/j.medcli.2017.10.036.

    Article  PubMed  Google Scholar 

  14. Glassner, K.L., B.P. Abraham, and E.M.M. Quigley. 2020. The microbiome and inflammatory bowel disease. The Journal of Allergy and Clinical Immunology 145 (1): 16–27. https://doi.org/10.1016/j.jaci.2019.11.003.

    Article  CAS  PubMed  Google Scholar 

  15. Lai, Y., X. Liang, H. Fan, Y. Liu, L. Zheng, W. Lu, Y. Sun, D. Huang, X. Liu, L. Zhang, D. Zuo, Z. Shou, Q. Tang, Y. Wang, Z. Li, Z. Jiang, S. Zang, H. Huang, Z. Tang, Q. Li, et al. 2022. Assessing the post-treatment therapeutic effect of tongxie in irritable bowel syndrome: A randomized controlled trial. Complementary Therapies in Medicine 68: 102839. https://doi.org/10.1016/j.ctim.2022.102839.

    Article  PubMed  Google Scholar 

  16. Sairenji, T., K.L. Collins, and D.V. Evans. 2017. An Update on Inflammatory Bowel Disease. Primary Care 44 (4): 673–692. https://doi.org/10.1016/j.pop.2017.07.010.

    Article  PubMed  Google Scholar 

  17. Zorgetto-Pinheiro, V.A., D.J. Machate, P.S. Figueiredo, G. Marcelino, P.A. Hiane, A. Pott, R.C.A. Guimarães, and D. Bogo. 2022. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. Journal of Medicinal Food 25 (4): 341–354. https://doi.org/10.1089/jmf.2021.0012.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, K., J. Yang, and H. Yuan. 2021. Recent progress in research on the gut microbiota and highland adaptation on the Qinghai-Tibet Plateau. Journal of Evolutionary Biology 34 (10): 1514–1530. https://doi.org/10.1111/jeb.13924.

    Article  PubMed  Google Scholar 

  19. Textor, S.C., and L.O. Lerman. 2019. The Role of Hypoxia in Ischemic Chronic Kidney Disease. Seminars in Nephrology 39 (6): 589–598. https://doi.org/10.1016/j.semnephrol.2019.10.008.

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes, C.E., D. Denault, and M. Varacallo. 2022. Physiology. Oxygen Transport. In StatPearls: StatPearls Publishing.

    Google Scholar 

  21. Andersen, J.V., N.H. Skotte, S.K. Christensen, F.S. Polli, M. Shabani, K.H. Markussen, H. Haukedal, E.W. Westi, M. Diaz-delCastillo, R.C. Sun, K.A. Kohlmeier, A. Schousboe, M.S. Gentry, H. Tanila, K.K. Freude, B.I. Aldana, M. Mann, and H.S. Waagepetersen. 2021. Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death & Disease 12 (11): 954. https://doi.org/10.1038/s41419-021-04237-y.

    Article  CAS  Google Scholar 

  22. Liu, H.M., H.Y. Tan, Y. Lin, B.N. Xu, W.H. Zhao, and Y.A. Xie. 2020. MicroRNA-1271-5p inhibits cell proliferation and enhances radiosensitivity by targeting CDK1 in hepatocellular carcinoma. Journal of Biochemistry 167 (5): 513–524. https://doi.org/10.1093/jb/mvz114.

    Article  CAS  PubMed  Google Scholar 

  23. Yan, R., L. Zhang, N. Xia, Q. Liu, H. Sun, and H. Guo. 2015. Knockdown of augmenter of liver regeneration in HK-2 cells inhibits inflammation response via the mitogen-activated protein kinase signaling pathway. Inflammation Research : Official Journal of the European Histamine Research Society 64 (6): 453–462. https://doi.org/10.1007/s00011-015-0825-x.

    Article  CAS  Google Scholar 

  24. Zhang, Y., C. Guo, Y. Li, X. Han, X. Luo, L. Chen, T. Zhang, N. Wang, and W. Wang. 2022. Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients 14 (14): 2864. https://doi.org/10.3390/nu14142864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi, J., T. Yu, K. Song, S. Du, S. He, X. Hu, X. Li, H. Li, S. Dong, Y. Zhang, Z. Xie, C. Li, and J. Yu. 2021. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biology 41: 101954. https://doi.org/10.1016/j.redox.2021.101954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ergin, S., N. Kherad, and M. Alagoz. 2022. RNA sequencing and its applications in cancer and rare diseases. Molecular Biology Reports 49 (3): 2325–2333. https://doi.org/10.1007/s11033-021-06963-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, Y.J., E.H. Ren, W.H. Yuan, G.Z. Zhang, Z.L. Wu, and Q.Q. Xie. 2020. GRB10 and E2F3 as Diagnostic Markers of Osteoarthritis and Their Correlation with Immune Infiltration. Diagnostics (Basel, Switzerland) 10 (3): 171. https://doi.org/10.3390/diagnostics10030171.

    Article  CAS  PubMed  Google Scholar 

  28. Peng, X.Y., Y. Wang, H. Hu, X.J. Zhang, and Q. Li. 2019. Identification of the molecular subgroups in coronary artery disease by gene expression profiles. Journal of Cellular Physiology 234 (9): 16540–16548. https://doi.org/10.1002/jcp.28324.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, M., M. Ye, J. Wang, L. Ye, and M. Jin. 2020. Construction of Potential miRNA-mRNA Regulatory Network in COPD Plasma by Bioinformatics Analysis. International Journal of Chronic Obstructive Pulmonary Disease 15: 2135–2145. https://doi.org/10.2147/COPD.S255262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, J., P. Zhao, Y. Tian, K. Li, L. Zhang, Q. Guan, X. Mei, and Y. Qin. 2021. The Anti-Inflammatory Effect of a Combination of Five Compounds From Five Chinese Herbal Medicines Used in the Treatment of COPD. Frontiers in Pharmacology 12: 709702. https://doi.org/10.3389/fphar.2021.709702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng, D., Z. Ye, R. Shen, G. Yu, J. Wu, Y. Xiong, R. Zhou, W. Qiu, N. Huang, L. Sun, X. Li, J. Bin, Y. Liao, M. Shi, and W. Liao. 2021. IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Frontiers in Immunology 12: 687975. https://doi.org/10.3389/fimmu.2021.687975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Newman, A.M., C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, C.D. Hoang, M. Diehn, and A.A. Alizadeh. 2015. Robust enumeration of cell subsets from tissue expression profiles. Nature Methods 12 (5): 453–457. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng, X., B. Yao, J. Liu, G.W. Gong, M. Liu, J. Li, H.F. Pan, Q. Li, D. Yang, P. Lu, D. Wu, P. Xu, B. Chen, P. Chen, M. Zhang, K. Zen, J. Jing, D.C.S. Huang, D. Chen, Z.W. Jiang, et al. 2023. The SMARCA4R1157W mutation facilitates chromatin remodeling and confers PRMT1/SMARCA4 inhibitors sensitivity in colorectal cancer. NPJ Precision Oncology 7 (1): 28. https://doi.org/10.1038/s41698-023-00367-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahimi, S., A.M. Roushandeh, A. Ebrahimi, A.A. Samadani, Y. Kuwahara, and M.H. Roudkenar. 2019. CRISPR/Cas9-mediated knockout of Lcn2 effectively enhanced CDDP-induced apoptosis and reduced cell migration capacity of PC3 cells. Life Sciences 231: 116586. https://doi.org/10.1016/j.lfs.2019.116586.

    Article  CAS  PubMed  Google Scholar 

  35. Gómez-Maldonado, L., M. Tiana, O. Roche, A. Prado-Cabrero, L. Jensen, A. Fernandez-Barral, I. Guijarro-Muñoz, E. Favaro, G. Moreno-Bueno, L. Sanz, J. Aragones, A. Harris, O. Volpert, B. Jimenez, and L. del Peso. 2015. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34 (20): 2609–2620. https://doi.org/10.1038/onc.2014.200.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, F., H. Qiu, M. Xue, S. Zhang, X. Zhang, J. Xu, J. Chen, Y. Yang, and J. Xie. 2019. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Research & Therapy 10 (1): 345. https://doi.org/10.1186/s13287-019-1447-y.

    Article  CAS  Google Scholar 

  37. Sun, S., Y. Du, C. Yin, X. Suo, R. Wang, R. Xia, and X. Zhang. 2019. Water-separated part of Chloranthus serratus alleviates lipopolysaccharide- induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways. BMC Complementary and Alternative Medicine 19 (1): 343. https://doi.org/10.1186/s12906-019-2755-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ying, M., D. You, X. Zhu, L. Cai, S. Zeng, and X. Hu. 2021. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biology 46: 102065. https://doi.org/10.1016/j.redox.2021.102065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin, J., S. Qiu, P. Wang, X. Liang, F. Huang, H. Wu, B. Zhang, W. Zhang, X. Tian, R. Xu, H. Shi, and X. Wu. 2019. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. Journal of Experimental & Clinical Cancer Research : CR 38 (1): 377. https://doi.org/10.1186/s13046-019-1351-4.

    Article  CAS  PubMed Central  Google Scholar 

  40. Guo, Y., X. Jia, Y. Cui, Y. Song, S. Wang, Y. Geng, R. Li, W. Gao, and D. Fu. 2021. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biology 41: 101915. https://doi.org/10.1016/j.redox.2021.101915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gamah, M., M. Alahdal, Y. Zhang, Y. Zhou, Q. Ji, Z. Yuan, Y. Han, X. Shen, Y. Ren, and W. Zhang. 2021. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 12 (1): 7985–7994. https://doi.org/10.1080/21655979.2021.1975017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bian, J., F. Cai, H. Chen, Z. Tang, K. Xi, J. Tang, L. Wu, Y. Xu, L. Deng, Y. Gu, W. Cui, and L. Chen. 2021. Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres. Nano Letters 21 (6): 2690–2698. https://doi.org/10.1021/acs.nanolett.0c04713.

    Article  CAS  PubMed  Google Scholar 

  43. Chen, M.L., C.G. Hong, T. Yue, H.M. Li, R. Duan, W.B. Hu, J. Cao, Z.X. Wang, C.Y. Chen, X.K. Hu, B. Wu, H.M. Liu, Y.J. Tan, J.H. Liu, Z.W. Luo, Y. Zhang, S.S. Rao, M.J. Luo, H. Yin, Y.Y. Wang, and Z.Z. Liu. 2021. Inhibition of miR-331–3p and miR-9–5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 11 (5): 2395–2409. https://doi.org/10.7150/thno.47408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y., Z. Wu, Y.T. Bai, G.Y. Wu, and G. Chen. 2017. Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer’s disease. Molecular Neurodegeneration 12 (1): 73. https://doi.org/10.1186/s13024-017-0213-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou, S., C. Wang, Z. Cui, P. Guo, Q. Meng, X. Shi, Y. Gao, G. Yang, and Z. Han. 2016. β-Elemene induces apoptosis of human rheumatoid arthritis fibroblast-like synoviocytes via reactive oxygen species-dependent activation of p38 mitogen-activated protein kinase. Pharmacological Reports : PR 68 (1): 7–11. https://doi.org/10.1016/j.pharep.2015.06.004.

    Article  CAS  PubMed  Google Scholar 

  46. Liang, N., Y. Li, and H.Y. Chung. 2017. Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways. International Journal of Oncology 51 (1): 213–222. https://doi.org/10.3892/ijo.2017.4004.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Q.F., J. Li, K. Jiang, R. Wang, J.L. Ge, H. Yang, S.J. Liu, L.T. Jia, L. Wang, and B.L. Chen. 2020. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics 10 (23): 10619–10633. https://doi.org/10.7150/thno.44871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. GBD 2017 Inflammatory Bowel Disease Collaborators. 2020. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet. Gastroenterology & Hepatology 5 (1): 17–30. https://doi.org/10.1016/S2468-1253(19)30333-4.

    Article  Google Scholar 

  49. Fakhoury, M., R. Negrulj, A. Mooranian, and H. Al-Salami. 2014. Inflammatory bowel disease: Clinical aspects and treatments. Journal of Inflammation Research 7: 113–120. https://doi.org/10.2147/JIR.S65979.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ott, A. 1987. Inflammation and transcutaneous measurement of oxygen pressure in dermatology. Advances in Experimental Medicine and Biology 220: 79–82. https://doi.org/10.1007/978-1-4613-1927-6_14.

    Article  CAS  PubMed  Google Scholar 

  51. Sawyer, R.G., M.D. Spengler, R.B. Adams, and T.L. Pruett. 1991. The peritoneal environment during infection. The effect of monomicrobial and polymicrobial bacteria on pO2 and pH. Annals of Surgery 213 (3): 253–260. https://doi.org/10.1097/00000658-199103000-00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lippl, F.J., S. Neubauer, S. Schipfer, N. Lichter, A. Tufman, B. Otto, and R. Fischer. 2010. Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity (Silver Spring, Md.) 18 (4): 675–681. https://doi.org/10.1038/oby.2009.509.

    Article  PubMed  Google Scholar 

  53. Zheng, L., C.J. Kelly, and S.P. Colgan. 2015. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. American Journal of Physiology. Cell Physiology 309 (6): C350–C360. https://doi.org/10.1152/ajpcell.00191.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thibault, M.P., É. Tremblay, C. Horth, A. Fournier-Morin, D. Grynspan, C. Babakissa, E. Levy, E. Ferretti, V. Bertelle, and J.F. Beaulieu. 2022. Lipocalin-2 and calprotectin as stool biomarkers for predicting necrotizing enterocolitis in premature neonates. Pediatric Research 91 (1): 129–136. https://doi.org/10.1038/s41390-021-01680-7.

    Article  CAS  PubMed  Google Scholar 

  55. Bakke, I., G.A. Walaas, T. Bruland, E.S. Røyset, A. van Beelen Granlund, C. Escudero-Hernández, S. Thorsvik, A. Münch, A.K. Sandvik, and A.E. Østvik. 2021. Mucosal and faecal neutrophil gelatinase-associated lipocalin as potential biomarkers for collagenous colitis. Journal of Gastroenterology 56 (10): 914–927. https://doi.org/10.1007/s00535-021-01814-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Na, Y.R., M. Stakenborg, S.H. Seok, and G. Matteoli. 2019. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nature reviews. Gastroenterology & Hepatology 16 (9): 531–543. https://doi.org/10.1038/s41575-019-0172-4.

    Article  CAS  Google Scholar 

  57. Cheng, L., H. Xing, X. Mao, L. Li, X. Li, and Q. Li. 2015. Lipocalin-2 promotes m1 macrophages polarization in a mouse cardiac ischaemia-reperfusion injury model. Scandinavian Journal of Immunology 81 (1): 31–38. https://doi.org/10.1111/sji.12245.

    Article  CAS  PubMed  Google Scholar 

  58. Orecchioni, M., Y. Ghosheh, A.B. Pramod, and K. Ley. 2019. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs Classically and M2(LPS-) vs Alternatively Activated Macrophages. Frontiers in Immunology 10: 1084. https://doi.org/10.3389/fimmu.2019.01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ciesielska, A., M. Matyjek, and K. Kwiatkowska. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences : CMLS 78 (4): 1233–1261. https://doi.org/10.1007/s00018-020-03656-y.

    Article  CAS  PubMed  Google Scholar 

  60. Yunna, C., H. Mengru, W. Lei, and C. Weidong. 2020. Macrophage M1/M2 polarization. European Journal of Pharmacology 877: 173090. https://doi.org/10.1016/j.ejphar.2020.173090.

    Article  CAS  PubMed  Google Scholar 

  61. Griffiths, H.R., D. Gao, and C. Pararasa. 2017. Redox regulation in metabolic programming and inflammation. Redox Biology 12: 50–57. https://doi.org/10.1016/j.redox.2017.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guma, M., S. Tiziani, and G.S. Firestein. 2016. Metabolomics in rheumatic diseases: Desperately seeking biomarkers. NatureReviews. Rheumatology 12 (5): 269–281. https://doi.org/10.1038/nrrheum.2016.1.

    Article  CAS  PubMed  Google Scholar 

  63. Zeng, W., Z. Xing, M. Tan, Y. Wu, and C. Zhang. 2021. Propofol regulates activated macrophages metabolism through inhibition of ROS-mediated GLUT1 expression. Inflammation research : Official Journal of the European Histamine Research Society 70 (4): 473–481. https://doi.org/10.1007/s00011-021-01449-y.

    Article  CAS  Google Scholar 

  64. Zhong, H., R. Song, Q. Pang, Y. Liu, J. Zhuang, Y. Chen, J. Hu, J. Hu, Y. Liu, Z. Liu, and J. Tang. 2018. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death & Disease 9 (10): 932. https://doi.org/10.1038/s41419-018-0996-9.

    Article  CAS  Google Scholar 

  65. Ye, L., Y. Jiang, and M. Zhang. 2022. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine & Growth Factor Reviews 68: 81–92. https://doi.org/10.1016/j.cytogfr.2022.11.001.

    Article  CAS  Google Scholar 

  66. Wang, G.L., B.H. Jiang, E.A. Rue, and G.L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America 92 (12): 5510–5514. https://doi.org/10.1073/pnas.92.12.5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, M., S. Wang, A. Zuo, J. Zhang, W. Wen, W. Jiang, H. Chen, D. Liang, J. Sun, and M. Wang. 2021. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cellular & Molecular Biology Letters 26 (1): 40. https://doi.org/10.1186/s11658-021-00283-8.

    Article  CAS  Google Scholar 

  68. Semenza, G.L. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148 (3): 399–408. https://doi.org/10.1016/j.cell.2012.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, Y., D. Zheng, H. Wang, S. Zhang, Y. Zhou, X. Ke, and G. Chen. 2023. Lipocalin 2 in the Paraventricular Thalamic Nucleus Contributes to DSS-Induced Depressive-Like Behaviors. Neuroscience Bulletin 39 (8): 1263–1277. https://doi.org/10.1007/s12264-023-01047-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moschen, A.R., T.E. Adolph, R.R. Gerner, V. Wieser, and H. Tilg. 2017. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends in Endocrinology and Metabolism: TEM 28 (5): 388–397. https://doi.org/10.1016/j.tem.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  71. Xiao, X., B.S. Yeoh, and M. Vijay-Kumar. 2017. Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition 37: 103–130. https://doi.org/10.1146/annurev-nutr-071816-064559.

    Article  CAS  PubMed  Google Scholar 

  72. Du, D., C. Liu, M. Qin, X. Zhang, T. Xi, S. Yuan, H. Hao, and J. Xiong. 2022. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharmaceutica Sinica. B 12 (2): 558–580. https://doi.org/10.1016/j.apsb.2021.09.019.

    Article  CAS  PubMed  Google Scholar 

  73. Wu, Y.J., W.J. Fang, S. Pan, S.S. Zhang, D.F. Li, Z.F. Wang, W.G. Chen, Q. Yin, and J. Zuo. 2021. Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis. International Immunopharmacology 101 (Pt A): 108175. https://doi.org/10.1016/j.intimp.2021.108175.

    Article  CAS  PubMed  Google Scholar 

  74. Lu, J., M. Wang, Y. Chen, H. Song, D. Wen, J. Tu, Y. Guo, and Z. Liu. 2023. NAMPT inhibition reduces macrophage inflammation through the NAD+/PARP1 pathway to attenuate liver ischemia-reperfusion injury. Chemico-Biological interactions 369: 110294. https://doi.org/10.1016/j.cbi.2022.110294.

    Article  CAS  PubMed  Google Scholar 

  75. Ugarte, F., D. Santapau, V. Gallardo, C. Garfias, A. Yizmeyián, S. Villanueva, C. Sepúlveda, J. Rocco, C. Pasten, C. Urquidi, G. Cavada, P. San Martin, F. Cano, and C.E. Irarrázabal. 2022. Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents With Type 1 Diabetes Mellitus. Frontiers in Endocrinology 12: 654269. https://doi.org/10.3389/fendo.2021.654269.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bisgaard, T.H., K.H. Allin, L. Keefer, A.N. Ananthakrishnan, and T. Jess. 2022. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment Nature reviews. Gastroenterology & Hepatology 19 (11): 717–726. https://doi.org/10.1038/s41575-022-00634-6.

    Article  Google Scholar 

  77. Kou, F., Y. Cheng, L. Shi, J. Liu, Y. Liu, R. Shi, G. Peng, and J. Li. 2022. LCN2 as a Potential Diagnostic Biomarker for Ulcerative Colitis-Associated Carcinogenesis Related to Disease Duration. Frontiers in Oncology 11: 793760. https://doi.org/10.3389/fonc.2021.793760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, W., R. Pan, M. Lu, Q. Zhang, Z. Lin, Y. Qin, Z. Wang, S. Gong, H. Lin, S. Chong, L. Lu, W. Liao, and X. Lu. 2021. Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 40 (45): 6369–6380. https://doi.org/10.1038/s41388-021-02029-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Cultivation Fund of the National Natural Science Foundation (Grant No. qiankehe2018-5764-11).

Author information

Authors and Affiliations

Authors

Contributions

YHY, FY and PSS wrote the paper and conceived and designed the experiments; LCY analyzed the data; DJC collected and provided the sample for this study. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to De-jun Cui.

Ethics declarations

Ethics Approval

All mouse experiments conducted in this study adhered to ethical principles and regulations governing the use of experimental animals, both internationally and domestically. The experimental procedures in this study have been approved by Guizhou Provincial People's Hospital, Medical College of Guizhou University (approval number: 2020413).

Consent to Participate

All participants in the study gave informed written consent to participate.

Consent for Publication

Authors: All authors have reviewed the manuscript and gave consent to publish.

Competing Interests

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Silencing efficiency verification of LCN2 sequence. Note: (A) RT-qPCR measured expression levels of LCN2 in mRNA of cells from different groups. (B) Expression levels of LCN2 in the protein of cells from different groups were detected by Western blot. The cell experiments were repeated three times. Compared to the sh-NC group, P<0.05, *P<0.01.(JPG 550 KB)

Fig. S2

Animal modeling process diagram. Note: Ctrl group: no intervention, normal drinking water; DSS group: after adaptive feeding, without any treatment, directly given 2.5% DSS concentration free drinking water for 7 days; DSS+hypoxia group: after adaptive feeding, without any treatment, directly given 2.5% DSS concentration free drinking water for 7 days, during which cultured in a hypoxic incubator. Transcriptional sequencing was performed on colonic tissues of the above three groups, and differential analysis was conducted between the Ctrl group vs DSS group and DSS group vs DSS+hypoxia group. DSS+hypoxia+Sh-NC group: targeted injection of empty lentivirus, after 7 days of recovery, given 2.5% DSS concentration free drinking water for 7 days, during which cultured in a hypoxic incubator; DSS+hypoxia+Sh-LCN2 group: targeted injection of LCN2-silencing lentivirus, after 7 days of recovery, given 2.5% DSS concentration free drinking water for 7 days, during which cultured in a hypoxic incubator; DSS+hypoxia+Sh-LCN2+DMOG group: targeted injection of LCN2-silencing lentivirus, after 7 days of recovery, given 2.5% DSS concentration free drinking water for 7 days, and daily administered 10mg/kg DMOG by gavage, during which cultured in a hypoxic incubator. Signs and symptoms were observed daily during the culture period, and biochemical tests were performed after euthanasia (JPG 3122 KB)

Fig. S3

The intersection of transcriptome sequencing results of two groups. Note: (A) Venn diagram of transcriptome sequencing results of two groups; (B) 12 differentially expressed genes in the intersection; (C) Heatmap showing the expression of the 12 differentially expressed genes in the two groups; (D) Interactions among the 12 differentially expressed genes. The LCN2 gene, a key gene identified in the previous analysis, is highlighted in red. (JPG 640 KB)

Fig. S4

CRISPR/Cas9 gene editing and knockout process of LCN2 and validation of knockout efficacy. Note: (A) Workflow of CRISPR/Cas9 gene editing and knockout of LCN2; (B) PCR products of LCN2-KO cells and β-actin from different groups run on agarose gel (Lane 1 = 100 bp ladder; Lane 2 = β-actin of RAW264.7-Scr cells; Lane 3 = β-actin of LCN2-KO cells; Lane 4 = LCN2 of RAW264.7-Scr cells; Lane 5 = LCN2 of LCN2-KO cells); (C) Immunofluorescence staining for the expression of LCN2. Compared to the KO-NC-scr group, P<0.05, *P<0.01. Bar=100 μm.(JPG 2726 KB)

Supplementary file5 (DOCX 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Yh., Yan, F., Shi, Ps. et al. HIF-1α Pathway Orchestration by LCN2: A Key Player in Hypoxia-Mediated Colitis Exacerbation. Inflammation 47, 1491–1519 (2024). https://doi.org/10.1007/s10753-024-01990-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-024-01990-y

KEY WORDS