Skip to main content
Log in

Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Besides being recognized by membrane receptor TLR4, lipopolysaccharide (LPS) can also be internalized into the cytosol and activate Caspase-4/11 pyroptotic pathways to further amplify inflammation in sepsis. The objective of this study was to investigate whether Galectin-3 (Gal3) could promote the uptake of LPS by governing RAGE or administering endocytosis, consequently activating Caspase 4/11 and mediating pyroptosis in sepsis-associated acute kidney injury (SA-AKI). By pinpointing Gal3, LPS, and EEA1 (endosome-marker) or LAMP1 (lysosome-marker) respectively, immunofluorescence discovered that Gal3 and LPS were mainly aggregated in early endosomes initially and translocated into lysosomes afterwards. In cells and animal models, Gal3 and the Caspase-4/11 pathways were simultaneously activated, and the overexpression of Gal3 could exacerbate pyroptosis, whereas inhibition of Gal3 or the knockdown of its expression could ameliorate pyroptosis, reduce the pathological changes of SA-AKI and improve the survival of the animals with SA-AKI. Silencing RAGE reduced pyroptosis in primary tubular epithelial cells (PTCs) activated by Gal3 and LPS but not in cells activated by Gal3 and outer membrane vesicles (with LPS inside), whereas pyroptosis in both was reduced by blockade of Gal3, indicating Gal3 promoted pyroptosis through both RAGE-dependent and RAGE-independent pathways. Our investigation further revealed a positive correlation between serum Gal3 and pyroptotic biomarkers IL-1 beta and IL-18 in patients with sepsis, and that serum Gal3 was an independent risk factor for mortality. Through our collective exploration, we unraveled the significant role of Gal3 in the internalization of LPS and the provocation of more intense pyroptosis, thus making it a vital pathogenic factor in SA-AKI and a possible therapeutic target. Gal3 enabled the internalization of endotoxin into endosomes and lysosomes via both RAGE-dependent (A) and RAGE-independent (B) pathways, leading to pyroptosis. The suppression of Gal3 curbed Caspase4/11 noncanonical inflammasomes and diminished sepsis and SA-AKI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data are presented in the main text and the supplementary files.

Abbreviations

Gal3:

Galectin-3

MCP:

Modified citrus pectin

AKI:

Acute kidney injury

RAGE:

Receptor for advanced glycation end products

LPS:

Lipopolysaccharide

OMVs:

Outer membrane vesicles

TEM:

Transmission electron microscopy

CRE:

Creatinine

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14 (7): 417–427.

    Article  PubMed  Google Scholar 

  2. Opal, S.M., P.F. Laterre, B. Francois, S.P. LaRosa, D.C. Angus, J.P. Mira, X. Wittebole, T. Dugernier, D. Perrotin, M. Tidswell, et al. 2013. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 309 (11): 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  3. Rice, T.W., A.P. Wheeler, G.R. Bernard, J.L. Vincent, D.C. Angus, N. Aikawa, I. Demeyer, S. Sainati, N. Amlot, C. Cao, et al. 2010. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine 38 (8): 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  4. Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671.

    Article  CAS  PubMed  Google Scholar 

  5. Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341 (6151): 1246–1249.

    Article  CAS  PubMed  Google Scholar 

  6. Vanaja, S.K., A.J. Russo, B. Behl, I. Banerjee, M. Yankova, S.D. Deshmukh, and V.A.K. Rathinam. 2016. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165 (5): 1106–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kutuzova, G.D., R.M. Albrecht, C.M. Erickson and N. 2001. Qureshi Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of lipopolysaccharide in RAW 264.7 cells. Journal of Immunolog 167 (1): 482–489.

  8. Deng, M., Y. Tang, W. Li, X. Wang, R. Zhang, X. Zhang, X. Zhao, J. Liu, C. Tang, Z. Liu, et al. 2018. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49 (4): 740–753 e747.

  9. Kopp, F., S. Kupsch, and A.B. Schromm. 2016. Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of lbp in intracellular LPS-signaling. Biochimica et Biophysica Acta 1863 (4): 660–672.

    Article  CAS  PubMed  Google Scholar 

  10. Gabarin, R.S., M. Li, P.A. Zimmel, J.C. Marshall, Y. Li, and H. Zhang. 2021. Intracellular and extracellular lipopolysaccharide signaling in sepsis: Avenues for novel therapeutic strategies. Journal of Innate Immunity 13 (6): 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sciacchitano, S., L. Lavra, A. Morgante, A. Ulivieri, F. Magi, G.P. De Francesco, C. Bellotti,  L.B. Salehi and A. Ricci. 2018. Galectin-3: one molecule for an alphabet of diseases, from A to Z. International Journal of Molecular Sciences 19 (2).

  12. Wang, F., L. Zhou, A. Eliaz, C. Hu, X. Qiang, L. Ke, G. Chertow, I. Eliaz, and Z. Peng. 2023. The potential roles of galectin-3 in AKI and CKD. Frontiers in Physiology 14: 1090724.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hong, M.H., I.C. Weng, F.Y. Li, W.H. Lin, and F.T. Liu. 2021. Intracellular galectins sense cytosolically exposed glycans as danger and mediate cellular responses. Journal of Biomedical Science 28 (1): 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lo, T.H., H.L. Chen, C.I. Yao, I.C. Weng, C.S. Li, C.C. Huang, N.J. Chen, C.H. Lin and F.T. Liu. 2021. Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. The Proceedings of the National Academy of Sciences U S A  118 (30).

  15. Prud’homme, M., M. Coutrot, T. Michel, L. Boutin, M. Genest, F. Poirier, J.M. Launay, B. Kane, S. Kinugasa, N. Prakoura, et al. 2019. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4 (6): 717–732.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun, H., H. Jiang, A. Eliaz, J.A. Kellum, Z. Peng, and I. Eliaz. 2021. Galectin-3 in septic acute kidney injury: A translational study. Critical Care 25 (1): 109.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lakshminarayan, R., C. Wunder, U. Becken, M.T. Howes, C. Benzing, S. Arumugam, S. Sales, N. Ariotti, V. Chambon, C. Lamaze, et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology 16 (6): 595–606.

    Article  CAS  PubMed  Google Scholar 

  18. Pugliese, G., F. Pricci, C. Iacobini, G. Leto, L. Amadio, P. Barsotti, L. Frigeri, D.K. Hsu, H. Vlassara, F.T. Liu, et al. 2001. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. The FASEB Journal 15 (13): 2471–2479.

    Article  CAS  PubMed  Google Scholar 

  19. Peng, Z.Y., H.Z. Wang, N. Srisawat, X. Wen, T. Rimmele, J. Bishop, K. Singbartl, R. Murugan, and J.A. Kellum. 2012. Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Critical Care Medicine 40 (2): 538–543.

    Article  CAS  PubMed  Google Scholar 

  20. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, et al. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315 (8): 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahkila, J., F.S. Ekholm, A. Arda, S. Delgado, J. Savolainen, J. Jimenez-Barbero, and R. Leino. 2019. Novel dextran-supported biological probes decorated with disaccharide entities for investigating the carbohydrate-protein interactions of gal-3. ChemBioChem 20 (2): 203–209.

    Article  CAS  PubMed  Google Scholar 

  22. Cui, Y., N.N. Zhang, D. Wang, W.H. Meng, and H.S. Chen. 2022. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-kB signaling pathway in microglia. Journal of Inflammation Research 15: 3369–3385.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aits, S., J. Kricker, B. Liu, A.M. Ellegaard, S. Hamalisto, S. Tvingsholm, E. Corcelle-Termeau, S. Hogh, T. Farkas, A. Holm Jonassen, et al. 2015. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11 (8): 1408–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia, J., A. Claude-Taupin, Y. Gu, S.W. Choi, R. Peters, B. Bissa, M.H. Mudd, L. Allers, S. Pallikkuth, K.A. Lidke, et al. 2020. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental Cell 52 (1): 69–87 e68.

  25. Feeley, E.M., D.M. Pilla-Moffett, E.E. Zwack, A.S. Piro, R. Finethy, J.P. Kolb, J. Martinez, I.E. Brodsky, and J. Coers. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114 (9): E1698–E1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, Y., and F. Shao. 2016. Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence. Current Opinion in Microbiology 29: 37–42.

    Article  PubMed  Google Scholar 

  27. Ferrer, M.F., E. Scharrig, N. Charo,A.L. Ripodas, R. Drut, E.A. Carrera Silva, A. Nagel, J.E. Nally, D.P. Montes de Oca, M. Schattner, et al. 2018. Macrophages and galectin 3 control bacterial burden in acute and subacute murine leptospirosis that determines chronic kidney fibrosis. Frontiers in Cellular and Infection Microbiology 8: 384.

  28. da Silva, A.A., T.L. Teixeira, S.C. Teixeira, F.C. Machado, M.A. Dos Santos, T.C. Tomiosso, P.C.B. Tavares, R. Brigido, F.A. Martins, N.S.L. Silva, et al. 2017. Galectin-3: A friend but not a foe during trypanosoma cruzi experimental infection. Frontiers in Cellular and Infection Microbiology 7: 463.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferreira, R.G., L.C. Rodrigues, D.C. Nascimento, A. Kanashiro, P.H. Melo, V.F. Borges, A. Gozzi, Prado D. da Silva, M.C. Borges, F.S. Ramalho, et al. 2018. Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection 77 (5): 391–397.

    Article  PubMed  Google Scholar 

  30. Mackinnon, A.C., M.A. Gibbons, S.L. Farnworth, H. Leffler, U.J. Nilsson, T. Delaine, A.J. Simpson, S.J. Forbes, N. Hirani, J. Gauldie, et al. 2012. Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. American Journal of Respiratory and Critical Care Medicine 185 (5): 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martinez-Martinez, E., C. Brugnolaro, J. Ibarrola, S. Ravassa, M. Buonafine, B. Lopez, A. Fernandez-Celis, R. Querejeta, E. Santamaria, J. Fernandez-Irigoyen, et al. 2019. CT-1 (cardiotrophin-1)-Gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension 73 (3): 602–611.

    Article  CAS  PubMed  Google Scholar 

  32. Henderson, N.C., A.C. Mackinnon, S.L. Farnworth, T. Kipari, C. Haslett, J.P. Iredale, F.T. Liu, J. Hughes, and T. Sethi. 2008. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. American Journal of Pathology 172 (2): 288–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schroeder, J.T., A.A. Adeosun, and A.P. Bieneman. 2020. Epithelial cell-associated galectin-3 activates human dendritic cell subtypes for pro-inflammatory cytokines. Frontiers in Immunology 11: 524826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caniglia, J.L., M.R. Guda, S. Asuthkar, A.J. Tsung, and K.K. Velpula. 2020. A potential role for galectin-3 inhibitors in the treatment of COVID-19. PeerJ 8: e9392.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Iacobini, C., L. Amadio, G. Oddi, C. Ricci, P. Barsotti, S. Missori, M. Sorcini, U. Di Mario, F. Pricci, and G. Pugliese. 2003. Role of galectin-3 in diabetic nephropathy. Journal of the American Society of Nephrology 14 (8 Suppl 3): S264-270.

    Article  CAS  PubMed  Google Scholar 

  36. Sano, H., D.K. Hsu, J.R. Apgar, L. Yu, B.B. Sharma, I. Kuwabara, S. Izui, and F.T. Liu. 2003. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of Clinical Investigation 112 (3): 389–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nomura, K., A. Vilalta, D.H. Allendorf, T.C. Hornik, and G.C. Brown. 2017. Activated microglia desialylate and phagocytose cells via neuraminidase, galectin-3, and mer tyrosine kinase. The Journal of Immunology 198 (12): 4792–4801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miao, N., F. Yin, H. Xie, Y. Wang, Y. Xu, Y. Shen, D. Xu, J. Yin, B. Wang, Z. Zhou, et al. 2019. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney International 96 (5): 1105–1120.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Y., H. Wang, J. Shen, R. Deng, X. Yao, Q. Guo, A. Lu, B. Sun, Y. Zhang, and G. Meng. 2019. Gasdermin D drives the nonexosomal secretion of galectin-3, an insulin signal antagonist. The Journal of Immunology 203 (10): 2712–2723.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, D., Y. He, R. Munoz-Planillo, Q. Liu, and G. Nunez. 2015. Caspase-11 requires the pannexin-1 channel and the purinergic p2x7 pore to mediate pyroptosis and endotoxic shock. Immunity 43 (5): 923–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su, L., X. Jiang, C. Yang, J. Zhang, B. Chen, Y. Li, S. Yao, Q. Xie, H. Gomez, R. Murugan, et al. 2019. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. Journal of Biological Chemistry 294 (50): 19395–19404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su, L., J. Zhang, J. Wang, X. Wang, E. Cao, C. Yang, Q. Sun, R. Sivakumar, and Z. Peng. 2023. Pannexin 1 targets mitophagy to mediate renal ischemia/reperfusion injury. Commun Biol 6 (1): 889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farhadi, S.A., R. Liu, M.W. Becker, E.A. Phelps and G.A. Hudalla. 2021. Physical tuning of galectin-3 signaling. The Proceedings of the National Academy of Sciences U S A 118 (19).

Download references

Acknowledgements

We sincerely thank Pro. Isaac Eliaz of Amitabha Medical Center (Santa Rosa, CA, USA) and Pro. Glenn Chertow of the Department of Medicine, Stanford University School of Medicine (Stanford, CA, USA) for their academic guidance.

Funding

This work was supported by the National Natural Science Foundation of China (Grant 82241039, 82272208 and 81971816 to Pro. Zhiyong Peng and 82102273 to Dr. Yiming Li).

Author information

Authors and Affiliations

Authors

Contributions

FW and JY contributed equally to this work; they conceived the idea, did the experiments, and analyzed the data together. The manuscript was written by FW. WZ, RG, CH, and YQ validated the data of this work. ZP and YL were involved in revising the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yiming Li or Zhiyong Peng.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee of Zhongnan Hospital of Wuhan University, China. Written consent to participate was obtained from the patients or their representatives in this study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fengyun Wang and Junwei Ye have contributed equally to this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Ye, J., Zhu, W. et al. Galectin-3 Mediates Endotoxin Internalization and Caspase-4/11 Activation in Tubular Epithelials and Macrophages During Sepsis and Sepsis-Associated Acute Kidney Injury. Inflammation 47, 454–468 (2024). https://doi.org/10.1007/s10753-023-01928-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01928-w

KEY WORDS

Navigation