Skip to main content
Log in

Interleukin 4 Reduces Brain Hyperexcitability after Traumatic Injury by Downregulating TNF-α, Upregulating IL-10/TGF-β, and Potential Directing Macrophage/Microglia to the M2 Anti-inflammatory Phenotype

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophage/microglia are activated after Traumatic brain injury (TBI), transform to inflammatory phenotype (M1) and trigger neuroinflammation, which provokes epileptogenesis. Interleukin-4 (IL-4) is a well-known drive of macrophage/microglia to the anti-inflammatory phenotype (M2). We tested effect of IL-4 on speed of epileptogenesis, brain expression of inflammatory and anti-inflammatory cytokines, and lesion size in TBI-injured male rats. Rats underwent TBI by Controlled Cortical Impact. Then 100 ng IL-4 was injected into cerebral ventricles. One day after TBI, pentylenetetrazole (PTZ) kindling started and development of generalized seizures was recorded. The lesion size, cell survival rate, TNF-α, TGF-β, IL-10, and Arginase1 (Arg1) was measured in the brain 6 h, 12 h, 24 h, 48 h, and 5 days after TBI. Astrocytes and macrophage/microglia activation/polarization was assessed by GFAP/Arg1 and Iba1/Arg1 immunostaining. TBI-injured rats were kindled by 50% less PTZ injections than control and sham-operated rats. IL-4 did not change kindling rate in sham-operated rats but inhibited acceleration of kindling rate in the TBI-injured rats. IL-4 decreased damage volume and number of destroyed neurons. IL-4 stopped TNF-α whereas upregulated TGF-β, IL-10, and Arg1 expressions. Iba1/Arg1 positive macrophage/microglia was notably increased 48 h after IL-4 administration. IL-4 suppresses TBI-induced acceleration of epileptogenesis in rats by directing TBI neuroinflammation toward an anti-inflammatory tone and inhibition of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dewan, M.C., A. Rattani, S. Gupta, R.E. Baticulon, Y.C. Hung, et al. 2018. Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery 130: 1080–1097. https://doi.org/10.3171/2017.10.JNS17352.

    Article  PubMed  Google Scholar 

  2. Woodcock, T., and M.C. Morganti-Kossmann. 2013. The role of markers of inflammation in traumatic brain injury. Frontiers in Neurology 4: 18. https://doi.org/10.3389/fneur.2013.00018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunt, R.F., J.A. Boychuk, and B.N. Smith. 2013. Neural circuit mechanisms of post-traumatic epilepsy. Frontiers in Cellular Neuroscience 7: 89. https://doi.org/10.3389/fncel.2013.00089.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Turtzo, L.C., J. Lescher, L. Janes, D.D. Dean, M.D. Budde, et al. 2014. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. Journal of Neuroinflammation 11: 82. https://doi.org/10.1186/1742-2094-11-82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiong, Y., A. Mahmood, and M. Chopp. 2015. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology 21: 137–151. https://doi.org/10.1016/j.cjtee.2018.02.003.

    Article  CAS  Google Scholar 

  6. Cruz-Haces, M., J. Tang, G. Acosta, J. Fernandez, and R. Shi. 2017. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Translational Neurodegeneration 6: 20. https://doi.org/10.1186/s40035-017-0088-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Webster, K.M., M. Sun, P. Crack, T.J. O’Brien, S.R. Shultz, et al. 2017. Inflammation in epileptogenesis after traumatic brain injury. Journal of Neuroinflammation 14: 10. https://doi.org/10.1186/s12974-016-0786-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Global Epilepsy Report 2019. https://www.ilae.org/about-ilae/policy-and-advocacy/international-public-policy-activities/global-epilepsy-report-2019. Accessed 1 Apr 2023.

  9. Perucca, P., and I.E. Scheffer. 2021. Genetic contributions to acquired epilepsies. Epilepsy Currents 21: 5–13. https://doi.org/10.1177/1535759720954254.

    Article  PubMed  Google Scholar 

  10. Fordington, S., and M. Manford. 2020. A review of seizures and epilepsy following traumatic brain injury. Journal of Neurology 267: 3105–3111. https://doi.org/10.1007/s00415-020-09926-w.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mukherjee, S., G.M. Arisi, K. Mims, G. Hollingsworth, K. O’Neil, et al. 2020. Neuroinflammatory mechanisms of post-traumatic epilepsy. Journal of Neuroinflammation 17: 193. https://doi.org/10.1186/s12974-020-01854-w.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma, S., G. Tiarks, J. Haight, and A.G. Bassuk. 2021. Neuropathophysiological mechanisms and treatment strategies for post-traumatic epilepsy. Frontiers in Molecular Neuroscience 14: 612073. https://doi.org/10.3389/fnmol.2021.612073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, L., W. Shan, H. Yang, R. Liu, J. Wu, et al. 2021. The role of neuroinflammation in post-traumatic epilepsy. Frontiers in Neurology 12: 646152. https://doi.org/10.3389/fneur.2021.646152.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gadani, S.P., J.C. Cronk, G.T. Norris, and J. Kipnis. 2012. IL-4 in the brain: a cytokine to remember. Journal of Immunology (Baltimore, Md.: 1950) 189: 4213–4219. https://doi.org/10.4049/jimmunol.1202246.

    Article  CAS  PubMed  Google Scholar 

  15. Woodward, E.A., C.M. Prêle, S.E. Nicholson, T.B. Kolesnik, and P.H. Hart. 2010. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 131: 118–127. https://doi.org/10.1111/j.1365-2567.2010.03281.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X., J. Liu, S. Zhao, H. Zhang, W. Cai, et al. 2016. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47: 498–504. https://doi.org/10.1161/STROKEAHA.115.012079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitchell, R.E., M. Hassan, B.R. Burton, G. Britton, E.V. Hill, et al. 2017. IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation. Scientific Reports 7: 11315. https://doi.org/10.1038/s41598-017-11803-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiong, X., G.E. Barreto, L. Xu, Y.B. Ouyang, X. Xie, et al. 2011. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42: 2026–2032. https://doi.org/10.1161/STROKEAHA.110.593772.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, S.I., S.R. Jeong, Y.M. Kang, D.H. Han, B.K. Jin, et al. 2010. Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury. Journal of Neuroscience Research 88: 2409–2419. https://doi.org/10.1002/jnr.22411.

    Article  CAS  PubMed  Google Scholar 

  20. Girard, S., D. Brough, G. Lopez-Castejon, J. Giles, N.J. Rothwell, et al. 2013. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61: 813–824. https://doi.org/10.1002/glia.22478.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, H.L., N. Kostulas, Y.M. Huang, B.G. Xiao, P. van der Meide, et al. 2001. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. Journal of Neuroimmunology 116: 5–14. https://doi.org/10.1016/s0165-5728(01)00264-8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, X., H. Wang, G. Sun, J. Zhang, N.J. Edwards, et al. 2015. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. Journal of Neuroscience 35: 11281–11291. https://doi.org/10.1523/JNEUROSCI.1685-15.2015.

    Article  CAS  PubMed  Google Scholar 

  23. Pu, H., C. Ma, Y. Zhao, Y. Wang, W. Zhang, et al. 2021. Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism 41: 2870–2886. https://doi.org/10.1177/0271678X211028680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Francos-Quijorna, I., J. Amo-Aparicio, A. Martinez-Muriana, and R. López-Vales. 2016. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia 64: 2079–2092. https://doi.org/10.1002/glia.23041.

    Article  PubMed  Google Scholar 

  25. Lima, R., S. Monteiro, J.P. Lopes, P. Barradas, N.L. Vasconcelos, et al. 2017. Systemic interleukin-4 administration after spinal cord injury modulates inflammation and promotes neuroprotection. Pharmaceuticals (Basel) 10: 83. https://doi.org/10.3390/ph10040083.

    Article  CAS  PubMed  Google Scholar 

  26. Pu, H., X. Zheng, X. Jiang, H. Mu, F. Xu, et al. 2020. Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARγ. Journal of Cerebral Blood Flow and Metabolism 41: 511–529. https://doi.org/10.1177/0271678X20941393.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, T., X. Zhai, J. Jiang, X. Song, W. Han, et al. 2017. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Research 1657: 120–129. https://doi.org/10.1016/j.brainres.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  28. Eslami, M., E. Ghanbari, M. Sayyah, F. Etemadi, S. Choopani, et al. 2016. Traumatic brain injury accelerates kindling epileptogenesis in rats. Neurological Research 38: 269–274. https://doi.org/10.1179/1743132815Y.0000000086.

    Article  CAS  PubMed  Google Scholar 

  29. Hesam, S., B. Khoshkholgh-Sima, H.G. Pourbadie, V. Babapour, M. Zendedel, et al. 2018. Monophosphoryl lipid A and Pam3Cys prevent the increase in seizure susceptibility and epileptogenesis in rats undergoing traumatic brain injury. Neurochemical Research 43: 1978–1985. https://doi.org/10.1007/s11064-018-2619-3.

    Article  CAS  PubMed  Google Scholar 

  30. Paxinos, G., and C. Watson. 2007. The rat brain in stereotaxic coordinates. San Diego: Elsevier, Academic press.

    Google Scholar 

  31. Cherry, J.D., J.A. Olschowka, and M.K. O’Banion. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation 11: 98. https://doi.org/10.1186/1742-2094-11-98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Racine, R.J. 1972. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology 32: 281–294. https://doi.org/10.1016/0013-4694(72)90177-0.

    Article  CAS  PubMed  Google Scholar 

  33. Eslami, M., M. Sayyah, M. Soleimani, L. Alizadeh, and M. Hadjighassem. 2015. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury. Journal of Neuroimmunology 289: 143–151. https://doi.org/10.1016/j.jneuroim.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  34. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  35. Lively, S., and L.C. Schlichter. 2018. Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Frontiers in Cellular Neuroscience 12: 215. https://doi.org/10.3389/fncel.2018.00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee, S., L.Y. Chen, T.J. Papadimos, S. Huang, B.L. Zuraw, et al. 2009. Lipopolysaccharide-driven Th2 cytokine production in macrophages is regulated by both MyD88 and TRAM. Journal of Biological Chemistry 284: 29391–29398. https://doi.org/10.1074/jbc.M109.005272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, W., Y. Zhang, Y. He, X. Wang, and Q. Fang. 2019. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Experimental Cell Research 376: 124–132. https://doi.org/10.1016/j.yexcr.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  38. Orecchioni, M., Y. Ghosheh, A.B. Pramod, and K. Ley. 2019. Macrophage polarization: different gene signatures in M1 (LPS+) vs. classically and M2 (LPS-) vs. alternatively activated macrophages. Frontiers in Immunology 10: 1084. https://doi.org/10.3389/fimmu.2019.01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leach, M.W., E.A. Snyder, D.P. Sinha, and I.Y. Rosenblum. 1997. Safety evaluation of recombinant human interleukin-4. I. Preclinical studies. Clinical Immunology and Immunopathology 83: 8–11. https://doi.org/10.1006/clin.1997.4303.

    Article  CAS  PubMed  Google Scholar 

  40. Vokes, E.E., R. Figlin, H. Hochster, M. Lotze, and M.E. Rybak. 1998. A phase II study of recombinant human interleukin-4 for advanced or recurrent non-small cell lung cancer. Cancer Journal from Scientific American 4: 46–51.

    CAS  PubMed  Google Scholar 

  41. Mantovani, A., S.K. Biswas, M.R. Galdiero, A. Sica, and M. Locati. 2013. Microglia plasticity and polarization in tissue repair and remodeling. Journal of Pathology 229: 176–185. https://doi.org/10.1002/path.4133.

    Article  CAS  PubMed  Google Scholar 

  42. Salmon-Ehr, V., L. Ramont, G. Godeau, P. Birembaut, M. Guenounou, et al. 2000. Implication of interleukin-4 in wound healing. Laboratory Investigation: A Journal of Technical Methods and Pathology 80: 1337–1343. https://doi.org/10.1038/labinvest.3780141.

    Article  CAS  PubMed  Google Scholar 

  43. Başkaya, M.K., A. Doğan, C. Temiz, and R.J. Dempsey. 2000. Application of 2,3,5-triphenyltetrazolium chloride staining to evaluate injury volume after controlled cortical impact brain injury: role of brain edema in evolution of injury volume. Journal of Neurotrauma 17: 93–99. https://doi.org/10.1089/neu.2000.17.93.

    Article  PubMed  Google Scholar 

  44. Benedek, A., K. Móricz, Z. Jurányi, G. Gigler, G. Lévay, et al. 2006. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Research 1116: 159–165. https://doi.org/10.1016/j.brainres.2006.07.123.

    Article  CAS  PubMed  Google Scholar 

  45. Liszczak, T.M., E.T. Hedley-Whyte, J.F. Adams, D.H. Han, V.S. Kolluri, et al. 1984. Limitations of tetrazolium salts in delineating infarcted brain. Acta Neuropathologica 65: 150–157. https://doi.org/10.1007/BF00690469.

    Article  CAS  PubMed  Google Scholar 

  46. Whalen, M.J., T. Dalkara, Z. You, J. Qiu, D. Bermpohl, et al. 2008. Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. Journal of Cerebral Blood Flow and Metaboism 28: 490–505. https://doi.org/10.1038/sj.jcbfm.9600544.

    Article  CAS  Google Scholar 

  47. Enam, S.F., S.R. Kader, N. Bodkin, J.G. Lyon, M. Calhoun, et al. 2020. Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. Journal of Neuroinflammation 17: 197. https://doi.org/10.1186/s12974-020-01860-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zamorano, J., H.Y. Wang, L.M. Wang, J.H. Pierce, and A.D. Keegan. 1996. IL-4 protects cells from apoptosis via the insulin receptor substrate pathway and a second independent signaling pathway. Journal of Immunology 157: 4926–4934.

    Article  CAS  Google Scholar 

  49. Reinhart, R., and T. Kaufmann. 2018. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K. Cell Death and Disease 9: 713. https://doi.org/10.1038/s41419-018-0754-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burton, O.T., A.R. Darling, J.S. Zhou, M. Noval-Rivas, T.G. Jones, et al. 2013. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunology 6: 740–750. https://doi.org/10.1038/mi.2012.112.

    Article  CAS  PubMed  Google Scholar 

  51. Chen, X., J. Zhang, Y. Song, P. Yang, Y. Yang, et al. 2020. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta pharmaceutica SinicaB 10: 1634–1645. https://doi.org/10.1016/j.apsb.2020.05.002.

    Article  CAS  Google Scholar 

  52. Clausen, F., N. Marklund, and L. Hillered. 2019. Acute inflammatory biomarker responses to diffuse traumatic brain injury in the rat monitored by a novel microdialysis technique. Journal of Neurotrauma 36: 201–211. https://doi.org/10.1089/neu.2018.5636.

    Article  PubMed  Google Scholar 

  53. Taupin, V., S. Toulmond, A. Serrano, J. Benavides, and F. Zavala. 1993. Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. Journal of Neuroimmunology 42: 177–185. https://doi.org/10.1016/0165-5728(93)90008-m.

    Article  CAS  PubMed  Google Scholar 

  54. Hart, P.H., G.F. Vitti, D.R. Burgess, G.A. Whitty, D.S. Piccoli, et al. 1989. Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proceedings of the National Academy of Sciences USA 86: 3803–3807. https://doi.org/10.1073/pnas.86.10.3803.

    Article  CAS  Google Scholar 

  55. Latta, C.H., T.L. Sudduth, E.M. Weekman, H.M. Brothers, E.L. Abner, et al. 2015. Determining the role of IL-4 induced neuroinflammation in microglial activity and amyloid-β using BV2 microglial cells and APP/PS1 transgenic mice. Journal of Neuroinflammation 12: 41. https://doi.org/10.1186/s12974-015-0243-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ratthé, C., J. Ennaciri, D.M. Garcês Gonçalves, S. Chiasson, and D. Girard. 2009. Interleukin (IL)-4 induces leukocyte infiltration in vivo by an indirect mechanism. Mediators of Inflammation 2009: 193970. https://doi.org/10.1155/2009/193970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Kampen, C., J. Gauldie, and S.M. Collins. 2005. Proinflammatory properties of IL-4 in the intestinal microenvironment. American Journal of Physiology Gastrointestinal and Liver Physiology 288: 111–117. https://doi.org/10.1152/ajpgi.00014.2004.

    Article  CAS  Google Scholar 

  58. Chong, S.A., S. Balosso, C. Vandenplas, G. Szczesny, E. Hanon, et al. 2018. Intrinsic inflammation is a potential anti-epileptogenic target in the organotypic hippocampal slice model. Neurotherapeutics 15: 470–488. https://doi.org/10.1007/s13311-018-0607-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lagarde, S., N. Villeneuve, A. Trébuchon, E. Kaphan, A. Lepine, et al. 2016. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: an open pilot study. Epilepsia 57: 956–966. https://doi.org/10.1111/epi.13387.

    Article  CAS  PubMed  Google Scholar 

  60. Riazi, K., M.A. Galic, J.B. Kuzmiski, W. Ho, K.A. Sharkey, et al. 2008. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proceedings of the National Academy of Sciences USA 105: 17151–17156. https://doi.org/10.1073/pnas.0806682105.

    Article  Google Scholar 

  61. Levings, M.K., and J.W. Schrader. 1999. IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and -independent mechanisms. Journal of Immunology 162: 5224–5229.

    Article  CAS  Google Scholar 

  62. Patel, D.C., G. Wallis, E.J. Dahle, P.B. McElroy, K.E. Thomson, et al. 2017. Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. eNeuro 4: ENEURO.0105-17.2017. https://doi.org/10.1523/ENEURO.0105-17.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rana, A., and A.E. Musto. 2018. The role of inflammation in the development of epilepsy. Journal of Neuroinflammation 15: 144. https://doi.org/10.1186/s12974-018-1192-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lagraoui, M., J.R. Latoche, N.G. Cartwright, G. Sukumar, C.L. Dalgard, et al. 2012. Controlled cortical impact and craniotomy induce strikingly similar profiles of inflammatory gene expression, but with distinct kinetics. Frontiers in Neurology 3: 155. https://doi.org/10.3389/fneur.2012.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kamm, K., W. Vanderkolk, C. Lawrence, M. Jonker, and A.T. Davis. 2006. The effect of traumatic brain injury upon the concentration and expression of interleukin-1beta and interleukin-10 in the rat. The Journal of Trauma 60: 152–157. https://doi.org/10.1097/01.ta.0000196345.81169.a1.

    Article  PubMed  Google Scholar 

  66. Cao, S., J. Liu, L. Song, and X. Ma. 2005. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in microglias. Journal of Immunology 174: 3484–3492. https://doi.org/10.4049/jimmunol.174.6.3484.

    Article  CAS  Google Scholar 

  67. Kambayashi, T., C.O. Jacob, and G. Strassmann. 1996. IL-4 and IL-13 modulate IL-10 release in endotoxin-stimulated murine peritoneal mononuclear phagocytes. Cellular Immunology 171: 153–158. https://doi.org/10.1006/cimm.1996.0186.

    Article  CAS  PubMed  Google Scholar 

  68. Levin, S.G., and O.V. Godukhin. 2007. Protective effects of interleukin-10 on the development of epileptiform activity evoked by transient episodes of hypoxia in rat hippocampal slices. Neuroscience and Behavioral Physiology 37: 467–470. https://doi.org/10.1007/s11055-007-0036-1.

    Article  CAS  PubMed  Google Scholar 

  69. Godukhin, O.V., S.G. Levin, and E.Y. Parnyshkova. 2009. The effects of interleukin-10 on the development of epileptiform activity in the hippocampus induced by transient hypoxia, bicuculline, and electrical kindling. Neuroscience and Behavioral Physiology 39: 625–631. https://doi.org/10.1007/s11055-009-9187-6.

    Article  CAS  PubMed  Google Scholar 

  70. Ishizaki, Y., R. Kira, M. Fukuda, H. Torisu, Y. Sakai, et al. 2009. Interleukin-10 is associated with resistance to febrile seizures: genetic association and experimental animal studies. Epilepsia 50: 761–767. https://doi.org/10.1111/j.1528-1167.2008.01861.x.

    Article  CAS  PubMed  Google Scholar 

  71. Wyss-Coray, T., L. Feng, E. Masliah, M.D. Ruppe, H.S. Lee, et al. 1995. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. American Journal of Pathology 147: 53–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cacheaux, L.P., S. Ivens, Y. David, A.J. Lakhter, G. Bar-Klein, et al. 2009. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. Journal of Neuroscience 29: 8927–8935. https://doi.org/10.1523/JNEUROSCI.0430-09.2009.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, F., X. Wang, L.A. Shapiro, M.L. Cotrina, W. Liu, et al. 2017. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Structure and Function 222: 1543–1556. https://doi.org/10.1007/s00429-016-1292-z.

    Article  CAS  PubMed  Google Scholar 

  74. Prehn, J.H., C. Backhauss, and J. Krieglstein. 1993. Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. Journal of Cerebral Blood Flow and Metabolism 13: 521–525. https://doi.org/10.1038/jcbfm.1993.67.

    Article  CAS  PubMed  Google Scholar 

  75. Kotlarz, D., B. Marquardt, T. Barøy, W.S. Lee, L. Konnikova, et al. 2018. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nature Genetics 50: 344–348. https://doi.org/10.1038/s41588-018-0063-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Venø, M.T., C.R. Reschke, G. Morris, N.M.C. Connolly, J. Su, et al. 2020. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of National Academy of Science USA 117: 15977–15988. https://doi.org/10.1073/pnas.1919313117.

    Article  CAS  Google Scholar 

  77. Laffer, B., D. Bauer, S. Wasmuth, M. Busch, T.V. Jalilvand, et al. 2019. Loss of IL-10 promotes differentiation of microglia to a M1 phenotype. Frontiers in Cellular Neuroscience 13: 430. https://doi.org/10.3389/fncel.2019.00430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, X., B. Spittau, and K. Krieglstein. 2012. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. Journal of Neuroinflammation 9: 210. https://doi.org/10.1186/1742-2094-9-210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yao, Y., X.H. Xu, and L. Jin. 2019. Macrophage polarization in physiological and pathological pregnancy. Frontiers in Immunology 10: 792. https://doi.org/10.3389/fimmu.2019.00792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amici, S.A., J. Dong, and M. Guerau-de-Arellano. 2017. Molecular mechanisms modulating the phenotype of macrophages and microglia. Frontiers in Immunology 8: 1520. https://doi.org/10.3389/fimmu.2017.01520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Conlon, P.J., S. Tyler, K.H. Grabstein, and P. Morrissey. 1989. Interleukin-4 (B-cell stimulatory factor-1) augments the in vivo generation of cytotoxic cells in immunosuppressed animals. Biotechnology Therapeutics 1: 31–41.

    PubMed  Google Scholar 

  82. Pepe, G., G. Calderazzi, M. De Maglie, A.M. Villa, and E. Vegeto. 2014. Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. Journal of Neuroinflammation 11: 211. https://doi.org/10.1186/s12974-014-0211-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rossi, C., M. Cusimano, M. Zambito, A. Finardi, A. Capotondo, et al. 2018. Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death and Disease 9: 250. https://doi.org/10.1038/s41419-018-0288-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jang, E., J.H. Kim, S. Lee, J.H. Kim, J.W. Seo, et al. 2013. Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. Journal of Immunology 191: 5204–5219. https://doi.org/10.4049/jimmunol.1301637.

    Article  CAS  Google Scholar 

  85. Brodie, C., N. Goldreich, T. Haiman, and G. Kazimirsky. 1998. Functional IL-4 receptors on mouse astrocytes: IL-4 inhibits astrocyte activation and induces NGF secretion. Journal of Neuroimmunology 81: 20–30. https://doi.org/10.1016/s0165-5728(97)00154-9.

    Article  CAS  PubMed  Google Scholar 

  86. Chen, L., L. Zhu, D. Lu, Z. Wu, Y. Han, et al. 2020. Interleukin 4 affects epilepsy by regulating glial cells: potential and possible mechanism. Frontiers in Molecular Neuroscience 13: 554547. https://doi.org/10.3389/fnmol.2020.554547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kumar, A., and D.J. Loane. 2020. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behavior and Immunity 26: 1191–1201. https://doi.org/10.1016/j.bbi.2012.06.008.

    Article  Google Scholar 

  88. Hirschberg, D.L., and M. Schwartz. 1995. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier. Journal of Neuroimmunology 61: 89–96. https://doi.org/10.1016/0165-5728(95)00087-i.

    Article  CAS  PubMed  Google Scholar 

  89. Hsieh, C.L., C.C. Kim, B.E. Ryba, E.C. Niemi, J.K. Bando, et al. 2013. Traumatic brain injury induces macrophage subsets in the brain. European Journal of Immunology 43: 2010–2022. https://doi.org/10.1002/eji.201243084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Greenhalgh, A.D., R. Passos Dos Santos, J.G. Zarruk, C.K. Salmon, A. Kroner, et al. 2016. Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain Behavior and Immunity 56: 61–67. https://doi.org/10.1016/j.bbi.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Research reported in this publication was supported by Elite Researcher Grant Committee under award number [943697] from the National Institute for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Acquisition of data, statistical analysis, data presentation: M Radpour, B Khoshkroodian, T Asgari; Experimental design, statistical analysis, data interpretation: HG Pourbadie; Study concept and design, obtained funding, administrative, technical, and material support, study supervision, analysis and interpretation of data, drafting the manuscript: M Sayyah.

Corresponding author

Correspondence to Mohammad Sayyah.

Ethics declarations

Ethics Approval

All animal experiments were carried out in accordance with the Review Board and Ethics Committee of Pasteur Institute of Iran, the National Institute for Medical Research Development (Authorization code 943697), and Council Directive 2010/63EU of the European Parliament, and the Council of 22 September 2010 on the protection of animals used for scientific purposes.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radpour, M., Khoshkroodian, B., Asgari, T. et al. Interleukin 4 Reduces Brain Hyperexcitability after Traumatic Injury by Downregulating TNF-α, Upregulating IL-10/TGF-β, and Potential Directing Macrophage/Microglia to the M2 Anti-inflammatory Phenotype. Inflammation 46, 1810–1831 (2023). https://doi.org/10.1007/s10753-023-01843-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01843-0

KEY WORDS

Navigation