Skip to main content

Advertisement

Log in

Ropivacaine Induces Cell Cycle Arrest in the G0/G1 Phase and Apoptosis of PC12 Cells via Inhibiting Mitochondrial STAT3 Translocation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract—

STAT3 has neuroprotective effect via non-canonical activation and mitochondrial translocation, but its effect on ropivacaine-induced neurotoxicity remains unclear. Our previous study revealed that apoptosis was an important mechanism of ropivacaine-induced neurotoxicity; this study is to illustrate the relationship between STAT3 with ropivacaine-induced apoptosis. Those results showed that ropivacaine treatment decreased cell viability, induced cell cycle arrest in the G0/G1 phase, apoptosis, oxidative stress, and mitochondrial dysfunction in PC12 cells. Moreover, ropivacaine decreased the phosphorylated levels of STAT3 at Ser727 and downregulated the expression of STAT3 upstream gene IL-6. The mitochondrial translocation of STAT3 was also hindered by ropivacaine. To further illustrate the connection of STAT3 protein structure with ropivacaine, the autodock-vina was used to examine the interaction between STAT3 and ropivacaine, and the results showed that ropivacaine could bind to STAT3’s proline site and other sites. In addition, the activator and inhibitor of mitoSTAT3 translocation were used to demonstrate it was involved in ropivacaine-induced apoptosis; the results showed that enhancing the mitochondrial STAT3 translocation could prevent ropivacaine-induced apoptosis. Finally, the expression of p-STAT3 and the levels of apoptosis in the spinal cord were also detected; the results were consistent with the cell experiment; ropivacaine decreased the expression of p-STAT3 protein and increased the levels of apoptosis in the spinal cord. We demonstrated that ropivacaine induced apoptosis by inhibiting the phosphorylation of STAT3 at Ser727 and the mitochondrial STAT3 translocation. This effect was reversed by the activation of the mitochondrial STAT3 translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data that support the study findings are available from the corresponding author upon reasonable request.

References

  1. Martin-Flores, M. 2019. Epidural and spinal anesthesia. The Veterinary clinics of North America Small animal practice 49: 1095–1108.

    Article  PubMed  Google Scholar 

  2. Cm, C., T. Gr, M. Lg, and A P, LA N, M F-M, AL dO, S A, DR dA, E dP. 2012. Local neurotoxicity and myotoxicity evaluation of cyclodextrin complexes of bupivacaine and ropivacaine. Anesthesia and analgesia 115: 1234–1241.

    Article  Google Scholar 

  3. Cai, X.Y., Y. Xia, S.H. Yang, X.Z. Liu, Z.W. Shao, Y.L. Liu, W. Yang, and L.M. Xiong. 2015. Ropivacaine- and bupivacaine-induced death of rabbit annulus fibrosus cells in vitro: Involvement of the mitochondrial apoptotic pathway. Osteoarthritis and cartilage 23: 1763–1775.

    Article  PubMed  Google Scholar 

  4. Aps, J., and N. Badr. 2020. Narrative review: The evidence for neurotoxicity of dental local anesthetics. Journal of dental anesthesia and pain medicine 20: 63–72.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y., L. Yan, Y. Zhang, and X. Yang. 2019. The role of DRP1 in ropivacaine-induced mitochondrial dysfunction and neurotoxicity. Artificial cells, nanomedicine, and biotechnology 47: 1788–1796.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S., Q. Lin, Z. Wang, and X. Pan. 2019. Ropivacaine induces neurotoxicity by activating MAPK/p38 signal to upregulate Fas expression in neurogliocyte. Neuroscience Letters 706: 7–11.

    Article  CAS  PubMed  Google Scholar 

  7. Wen, X., Y. Li, X. Liu, C. Sun, J. Lin, W. Zhang, Y. Wu, and X. Wang. 2019. Roles of CaMKIIβ in the neurotoxicity induced by ropivacaine hydrochloride in dorsal root ganglion. Artificial cells, nanomedicine, and biotechnology 47: 2948–2956.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng, Y., R. Wang, Y. Bian, W. Chen, and L. Peng. 2019. Catalpol attenuates IL-1β induced matrix catabolism, apoptosis and inflammation in rat chondrocytes and inhibits cartilage degeneration. Medical science monitor: International medical journal of experimental and clinical research 25: 6649–6659.

    Article  CAS  Google Scholar 

  9. Sgrignani J., M. Garofalo, M. Matkovic, J. Merulla, CV. Catapano, and A. Cavalli. 2018. Structural biology of STAT3 and its implications for anticancer therapies development. International journal of molecular sciences, 19: 1591.

  10. Vogel, T.P., J.D. Milner, and M.A. Cooper. 2015. The Ying and Yang of STAT3 in human disease. Journal of clinical immunology 35: 615–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guanizo, A.C., C.D. Fernando, D.J. Garama, and D.J. Gough. 2018. STAT3: A multifaceted oncoprotein. Growth factors (Chur, Switzerland) 36: 1–14.

    Article  CAS  Google Scholar 

  12. Hillmer, E.J., H. Zhang, H.S. Li, and S.S. Watowich. 2016. STAT3 signaling in immunity. Cytokine & growth factor reviews 31: 1–15.

    Article  Google Scholar 

  13. Fathi, N., G. Rashidi, A. Khodadadi, S. Shahi, and S. Sharifi. 2018. STAT3 and apoptosis challenges in cancer. International journal of biological macromolecules 117: 993–1001.

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava, J., and J. DiGiovanni. 2016. Non-canonical Stat3 signaling in cancer. Molecular carcinogenesis 55: 1889–1898.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, R., and M. Rincon. 2016. Mitochondrial Stat3, the need for design thinking. International journal of biological sciences 12: 532–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Szczepanek, K., Q. Chen, M. Derecka, F.N. Salloum, Q. Zhang, M. Szelag, J. Cichy, R.C. Kukreja, J. Dulak, E.J. Lesnefsky, and A.C. Larner. 2011. Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. The Journal of biological chemistry 286: 29610–29620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heusch, G., J. Musiolik, N. Gedik, and A. Skyschally. 2011. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circulation research 109: 1302–1308.

    Article  CAS  PubMed  Google Scholar 

  18. Flanagan, S.E., E. Haapaniemi, M.A. Russell, R. Caswell, H.L. Allen, E. De Franco, T.J. McDonald, H. Rajala, A. Ramelius, J. Barton, K. Heiskanen, T. Heiskanen-Kosma, M. Kajosaari, N.P. Murphy, T. Milenkovic, M. Seppänen, Å. Lernmark, S. Mustjoki, T. Otonkoski, J. Kere, N.G. Morgan, S. Ellard, and A.T. Hattersley. 2014. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nature genetics 46: 812–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steward-Tharp, S.M., A. Laurence, Y. Kanno, A. Kotlyar, A.V. Villarino, G. Sciume, S. Kuchen, W. Resch, E.A. Wohlfert, K. Jiang, K. Hirahara, G. Vahedi, H.W. Sun, L. Feigenbaum, J.D. Milner, S.M. Holland, R. Casellas, F. Powrie, and J.J. O’Shea. 2014. A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood 123: 2978–2987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y H, L W, J G, X J, F J, J Y. 2016. A modified procedure for lumbar intrathecal catheterization in rats. Neurological research 38: 725–732.

    Article  Google Scholar 

  21. Z S, H L, Q G, X X, Z Z, N W. 2012. In vivo and in vitro evidence of the neurotoxic effects of ropivacaine: The role of the Akt signaling pathway. Molecular medicine reports 6: 1455–1459.

    Article  Google Scholar 

  22. A B, S F, G L, D B. 2017. Transient neurologic symptoms (TNS) after intrathecal injection of ropivacaine through a dural tap during an attempted epidural for labour pain relief. Anaesthesia, critical care & pain medicine 36: 325–326.

    Article  Google Scholar 

  23. W Z, BM G. 2008. The toxicity of local anesthetics: The place of ropivacaine and levobupivacaine. Current opinion in anaesthesiology 21: 645–650.

    Article  Google Scholar 

  24. S C, S S. 2018. The role of local anaesthetic techniques in ERAS protocols for thoracic surgery. Journal of thoracic disease 10: 1998–2004.

    Article  Google Scholar 

  25. Yamashita A., M. Matsumoto, S. Matsumoto, M. Itoh, K. Kawai, and T. Sakabe. 2003. A comparison of the neurotoxic effects on the spinal cord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits. Anesthesia and analgesia, 97: 512–519.

  26. Byram, S.C., S.E. Bialek, V.A. Husak, D. Balcarcel, J. Park, J. Dang, and E.M. Foecking. 2020. Distinct neurotoxic effects of select local anesthetics on facial nerve injury and recovery. Restorative neurology and neuroscience 38: 173–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lirk P, I., Haller, H.P. Colvin, L. Lang, B. Tomaselli, L. Klimaschewski, and P. Gerner. 2008. In vitro, inhibition of mitogenactivated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity. Anesthesia and analgesia, 106: 1456–1464.

  28. Guryay, D., G. Karaege, K. Katircioglu, M. Ozkalkanli, U. Ozgurbuz, and S. Savaci. 2008. The effects of an epidural infusion of ropivacaine versus saline on sensory block after spinal anesthesia. Regional anesthesia and pain medicine 33: 217–221.

    Article  CAS  PubMed  Google Scholar 

  29. Takenami, T., S. Yagishita, F. Asato, M. Arai, and S. Hoka. 2002. Intrathecal lidocaine causes posterior root axonal degeneration near entry into the spinal cord in rats. Regional anesthesia and pain medicine 27: 58–67.

    CAS  PubMed  Google Scholar 

  30. S W, Q L, Z W, X P. 2019. Ropivacaine induces neurotoxicity by activating MAPK/p38 signal to upregulate Fas expression in neurogliocyte. Neuroscience letters 706: 7–11.

    Article  Google Scholar 

  31. Z N, J T, Y R, W F. 2018. Ropivacaine impairs mitochondrial biogenesis by reducing PGC-1α. Biochemical and biophysical research communications 504: 513–518.

    Article  Google Scholar 

  32. El-Deiry, W.S. 2016. p21(WAF1) Mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer research 76: 5189–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schade, A.E., M.G. Oser, H.E. Nicholson, and J.A. DeCaprio. 2019. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene 38: 4962–4976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, W., and G. McArthur. 2016. Cell cycle regulation and melanoma. Current oncology reports 18: 34.

    Article  PubMed  Google Scholar 

  35. Lim, S., and P. Kaldis. 2013. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development (Cambridge, England) 140: 3079–3093.

    Article  CAS  Google Scholar 

  36. Y C, L Y, Y Z, X Y. 2019. The role of DRP1 in ropivacaine-induced mitochondrial dysfunction and neurotoxicity. Artificial cells, nanomedicine, and biotechnology 47: 1788–1796.

    Article  Google Scholar 

  37. You, L., Z. Wang, H. Li, J. Shou, Z. Jing, J. Xie, X. Sui, H. Pan, and W. Han. 2015. The role of STAT3 in autophagy. Autophagy 11: 729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui, P., F. Wei, J. Hou, Y. Su, J. Wang, and S. Wang. 2020. STAT3 inhibition induced temozolomide-resistant glioblastoma apoptosis via triggering mitochondrial STAT3 translocation and respiratory chain dysfunction. Cellular signalling, 71: 109598.

  39. Li, H., W. Yao, Z. Liu, A. Xu, Y. Huang, X.L. Ma, M.G. Irwin, and Z. Xia. 2016. Hyperglycemia abrogates ischemic postconditioning cardioprotection by impairing AdipoR1/Caveolin-3/STAT3 signaling in diabetic rats. Diabetes 65: 942–955.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, G., M. Sheng, J. Wang, T. Teng, Y. Sun, Q. Yang, and Z. Xu. 2018. Zinc improves mitochondrial respiratory function and prevents mitochondrial ROS generation at reperfusion by phosphorylating STAT3 at Ser(727). Journal of molecular and cellular cardiology 118: 169–182.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Innovative Research Program for Graduates of Hubei University of medicine (NO. YC2020029), Hubei Natural Science Foundation (No. 2019CFB105).

Author information

Authors and Affiliations

Authors

Contributions

LHY and DXD designed the studies; ZL, LAH, and ZZ undertook the cell experiments and the construction of animal experiment; ZL and ZFY undertook the molecular biology testing; ZL, CHX, and WY undertook the molecular docking. ZL, ZFY, and ZZ analyzed data and wrote the draft of manuscript; ZL and LAH undertook the revision of manuscript.

Corresponding author

Correspondence to Huiyu Luo.

Ethics declarations

Ethical Approval and Consent to Participate

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at the Animal Ethics Committee of the Hubei University of Medicine (permit number 2018DW003).

Consent for Publication

The authors declare the consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10753_2021_1508_MOESM1_ESM.pdf

Supplementary file1 Supplementary Fig. 1 Ropivacaine promotes the protein expression of Cytochrome c and cleaved-PARP. A: The protein expression of Cytochrome c, PARP and GAPDH was detected by Western-blot. B: Quantification of the gray values in graphs A. C: Effect of ropivacaine on the colocalization of mitochondria (red) and Cytochrome c (green) was detected by fluorescence microscope. (PDF 8043 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Li, A., Zhang, Z. et al. Ropivacaine Induces Cell Cycle Arrest in the G0/G1 Phase and Apoptosis of PC12 Cells via Inhibiting Mitochondrial STAT3 Translocation. Inflammation 44, 2362–2376 (2021). https://doi.org/10.1007/s10753-021-01508-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01508-w

KEY WORDS:

Navigation