Skip to main content
Log in

LncRNA ANRIL Silencing Alleviates High Glucose-Induced Inflammation, Oxidative Stress, and Apoptosis via Upregulation of MME in Podocytes

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN), characterized by glomerular injury, is a common complication of both type 1 and type 2 diabetes, accompanied by massive proteinuria. Podocytes are reported to play pivotal roles in maintaining the glomerular filtration barrier. In addition, the expression of long non-coding RNAs (lncRNAs) ANRIL was upregulated in type 2 diabetes patients. Hence, the aim of this study was to investigate the underlying mechanisms implicated the role of LncRNA ANRIL in podocyte injury in DN. The concentration of inflammatory cytokines was quantified by the corresponding enzyme-linked immunosorbent assay (ELISA) kits. The mRNA levels of the target gene were determined by reverse transcription and real-time quantitative PCR (RT-qPCR). The expressions of proteins were evaluated by Western blot. The activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) level were measured by corresponding commercial kits. Finally, the apoptosis of podocytes was analyzed by TUNEL assay. In our study, LncRNA ANRIL was highly expressed in high glucose (HG)-induced podocytes. Moreover, LncRNA ANRIL silencing attenuated HG-induced inflammation, oxidative stress, and apoptosis and induced MME overexpression in podocytes. Interestingly, MME knockdown abolished the suppressive effect of LncRNA ANRIL silencing on HG-induced inflammation, oxidative stress, and apoptosis in podocytes. LncRNA ANRIL silencing alleviates HG-induced inflammation, oxidative stress, and apoptosis via upregulation of MME in podocytes. Hence, LncRNA ANRIL may be a novel and effective target to ameliorate podocyte injury in DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DN:

diabetic nephropathy

ESRD:

end-stage renal disease

LncRNAs:

long non-coding RNAs

TNF:

tumor necrosis factor

IL:

interleukin

LDH:

lactate dehydrogenase

SOD:

superoxide dismutase

MDA:

malondialdehyde

HG:

high glucose

MME:

membrane metallo-endopeptidase

References

  1. Gnudi, L., R.J.M. Coward, and D.A. Long. 2016. Diabetic nephropathy: Perspective on novel molecular mechanisms. Trends in Endocrinology and Metabolism 27: 820–830.

    Article  CAS  Google Scholar 

  2. Yamahara, K., M. Yasuda, S. Kume, D. Koya, H. Maegawa, and T. Uzu. 2013. The role of autophagy in the pathogenesis of diabetic nephropathy. Journal Diabetes Research 2013: 193757.

    Article  Google Scholar 

  3. Gheith, O., N. Farouk, N. Nampoory, M.A. Halim, and T. Al-Otaibi. 2016. Diabetic kidney disease: world wide difference of prevalence and risk factors. Journal Nephropharmacol 5: 49–56.

    Google Scholar 

  4. Feng, Y., H. Weng, L. Ling, T. Zeng, Y. Zhang, D. Chen, and H. Li. 2019. Modulating the gut microbiota and inflammation is involved in the effect of bupleurum polysaccharides against diabetic nephropathy in mice. International Journal of Biological Macromolecules 132: 1001–1011.

    Article  CAS  Google Scholar 

  5. Zhang, P., J. Fang, J. Zhang, S. Ding, and D. Gan. 2020. Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating Beclin1/UVRAG/Bcl2. Diabetes Metabolic Syndrome and Obesity 13: 641–652.

    Article  CAS  Google Scholar 

  6. Kim, Y.I., C.H. Kim, C.S. Choi, Y.E. Chung, M.S. Lee, S.I. Lee, J.Y. Park, S.K. Hong, and K.U. Lee. 2001. Microalbuminuria is associated with the insulin resistance syndrome independent of hypertension and type 2 diabetes in the Korean population. Diabetes Research and Clinical Practice 52: 145–152.

    Article  CAS  Google Scholar 

  7. Al-Rubeaan, K., K. Siddiqui, M. Alghonaim, A.M. Youssef, and D. AlNaqeb. 2018. The Saudi Diabetic Kidney Disease Study (Saudi-DKD): clinical characteristics and biochemical parameters. Annals of Saudi Medicine 38: 46–56.

    Article  Google Scholar 

  8. Yasuda-Yamahara, M., S. Kume, A. Tagawa, H. Maegawa, and T. Uzu. 2015. Emerging role of podocyte autophagy in the progression of diabetic nephropathy. Autophagy 11: 2385–2386.

    Article  CAS  Google Scholar 

  9. Lin, J.S., and K. Susztak. 2016. Podocytes: the weakest link in diabetic kidney disease? Current Diabetes Reports 16: 45.

    Article  Google Scholar 

  10. Tagawa, A., M. Yasuda, S. Kume, K. Yamahara, J. Nakazawa, M. Chin-Kanasaki, H. Araki, S. Araki, D. Koya, K. Asanuma, E.H. Kim, M. Haneda, N. Kajiwara, K. Hayashi, H. Ohashi, S. Ugi, H. Maegawa, and T. Uzu. 2016. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65: 755–767.

    Article  CAS  Google Scholar 

  11. Ziyadeh, F.N., and G. Wolf. 2008. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Current Diabetes Reviews 4: 39–45.

    Article  CAS  Google Scholar 

  12. Liu, B.C., X. Song, X.Y. Lu, D.T. Li, D.C. Eaton, B.Z. Shen, X.Q. Li, and H.P. Ma. 2013. High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochimica et Biophysica Acta 1833: 1434–1442.

    Article  CAS  Google Scholar 

  13. Zhan, X., C. Yan, Y. Chen, X. Wei, J. Xiao, L. Deng, Y. Yang, P. Qiu, and Q. Chen. 2018. Celastrol antagonizes high glucose-evoked podocyte injury, inflammation and insulin resistance by restoring the HO-1-mediated autophagy pathway. Molecular Immunology 104: 61–68.

    Article  CAS  Google Scholar 

  14. Li, S., X. Liu, J. Lei, J. Yang, P. Tian, and Y. Gao. 2017. Crocin protects podocytes against oxidative stress and inflammation induced by high glucose through inhibition of NF-kappaB. Cellular Physiology and Biochemistry 42: 1481–1492.

    Article  CAS  Google Scholar 

  15. Chen, Y., Q. Liu, Z. Shan, Y. Zhao, M. Li, B. Wang, X. Zheng, and W. Feng. 2019. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury. BMC Complementary and Alternative Medicine 19: 244.

    Article  Google Scholar 

  16. Morris, K.V., and J.S. Mattick. 2014. The rise of regulatory RNA. Nature Reviews. Genetics 15: 423–437.

    Article  CAS  Google Scholar 

  17. Sathishkumar, C., P. Prabu, V. Mohan, and M. Balasubramanyam. 2018. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Human Genomics 12: 41.

    Article  Google Scholar 

  18. Thomas, A.A., B. Feng, and S. Chakrabarti. 2018. ANRIL regulates production of extracellular matrix proteins and vasoactive factors in diabetic complications. American Journal of Physiology. Endocrinology and Metabolism 314: E191–E200.

    Article  Google Scholar 

  19. Lupfer, C., P.G. Thomas, P.K. Anand, P. Vogel, S. Milasta, J. Martinez, G. Huang, M. Green, M. Kundu, H. Chi, R.J. Xavier, D.R. Green, M. Lamkanfi, C.A. Dinarello, P.C. Doherty, and T.D. Kanneganti. 2013. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology 14: 480–488.

    Article  CAS  Google Scholar 

  20. Morigi, M., L. Perico, D. Corna, M. Locatelli, P. Cassis, C.E. Carminati, S. Bolognini, C. Zoja, G. Remuzzi, A. Benigni, and S. Buelli. 2020. C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight 5.

  21. Gagliardini, E., N. Perico, P. Rizzo, S. Buelli, L. Longaretti, L. Perico, S. Tomasoni, C. Zoja, D. Macconi, M. Morigi, G. Remuzzi, and A. Benigni. 2013. Angiotensin II contributes to diabetic renal dysfunction in rodents and humans via notch1/snail pathway. The American Journal of Pathology 183: 119–130.

    Article  CAS  Google Scholar 

  22. Wolf, G., S. Chen, and F.N. Ziyadeh. 2005. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54: 1626–1634.

    Article  CAS  Google Scholar 

  23. Li, M., Q. Guo, H. Cai, H. Wang, Z. Ma, and X. Zhang. 2020. miR-218 regulates diabetic nephropathy via targeting iKK-beta and modulating NK-kappaB-mediated inflammation. Journal of Cellular Physiology 235: 3362–3371.

    Article  CAS  Google Scholar 

  24. Yu, Q., M. Zhang, L. Qian, D. Wen, and G. Wu. 2019. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sciences 225: 1–7.

    Article  CAS  Google Scholar 

  25. Hou, Y., S. Lin, J. Qiu, W. Sun, M. Dong, Y. Xiang, L. Wang, and P. Du. 2020. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochemical and Biophysical Research Communications 521: 791–798.

    Article  CAS  Google Scholar 

  26. Hu, J., H. Wu, D. Wang, Z. Yang, and J. Dong. 2019. LncRNA ANRIL promotes nlrp3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie 157: 102–110.

    Article  CAS  Google Scholar 

  27. Wei, J.C., Y.L. Shi, and Q. Wang. 2019. LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-kappaB pathway. European Review for Medical and Pharmacological Sciences 23: 7732–7739.

    PubMed  Google Scholar 

  28. Wang, Y.Z., W.W. Xu, D.Y. Zhu, N. Zhang, Y.L. Wang, M. Ding, X.M. Xie, L.L. Sun, and X.X. Wang. 2018. Specific expression network analysis of diabetic nephropathy kidney tissue revealed key methylated sites. Journal of Cellular Physiology 233: 7139–7147.

    Article  CAS  Google Scholar 

  29. Ramirez, A.K., S. Dankel, W. Cai, M. Sakaguchi, S. Kasif, and C.R. Kahn. 2019. Membrane metallo-endopeptidase (neprilysin) regulates inflammatory response and insulin signaling in white preadipocytes. Molecular Metabolism 22: 21–36.

    Article  CAS  Google Scholar 

  30. Liu, X.L., J.L. Liu, Y.C. Xu, X. Zhang, Y.X. Wang, L.H. Qing, W. Guo, J. Ding, and L.H. Meng. 2019. Membrane metallo-endopeptidase mediates cellular senescence induced by oncogenic PIK3CA(H1047R) accompanied with pro-tumorigenic secretome. International Journal of Cancer 145: 817–829.

    Article  CAS  Google Scholar 

  31. Guo, Z., L. Li, Y. Gao, X. Zhang, and M. Cheng. 2019. Overexpression of lncRNA ANRIL aggravated hydrogen peroxide-disposed injury in pc-12 cells via inhibiting miR-499a/PDCD4 axis-mediated PI3K/Akt/mTOR/p70S6K pathway. Artificial Cells Nanomedicine Biotechnology 47: 2624–2633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.C. and J.J. participated in the conception of the study and writing of the manuscript. All of the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Juanjuan Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Jiang, J. LncRNA ANRIL Silencing Alleviates High Glucose-Induced Inflammation, Oxidative Stress, and Apoptosis via Upregulation of MME in Podocytes. Inflammation 43, 2147–2155 (2020). https://doi.org/10.1007/s10753-020-01282-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01282-1

Key words

Navigation