Skip to main content

Advertisement

Log in

DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pullamsetti, S.S., R. Savai, W. Janssen, B.K. Dahal, W. Seeger, F. Grimminger, H.A. Ghofrani, N. Weissmann, and R.T. Schermuly. 2011. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clinical Microbiology and Infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17 (1): 7–14.

    Article  CAS  Google Scholar 

  2. Garcia-Hernandez, M.H., R. Gonzalez-Amaro, and D.P. Portales-Perez. 2014. Specific therapy to regulate inflammation in rheumatoid arthritis: Molecular aspects. Immunotherapy 6 (5): 623–636.

    Article  CAS  PubMed  Google Scholar 

  3. Mendel, I., N. Yacov, D. Harats, and E. Breitbart. 2015. Therapies targeting innate immunity for fighting inflammation in atherosclerosis. Current Pharmaceutical Design 21 (9): 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  4. Karam, B.S., A. Chavez-Moreno, W. Koh, J.G. Akar, and F.G. Akar. 2017. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology. 16 (1): 120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernandes, J.V., R.N. Cobucci, C.A. Jatoba, T.A. Fernandes, J.W. de Azevedo, and J.M. de Araujo. 2015. The role of the mediators of inflammation in cancer development. Pathology Oncology Research : POR 21 (3): 527–534.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.

    Article  CAS  PubMed  Google Scholar 

  7. Hedger, M.P. 2002. Macrophages and the immune responsiveness of the testis. Journal of Reproductive Immunology. 57 (1–2): 19–34.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, D., C. Huang, Z. Lin, S. Zhan, L. Kong, C. Fang, and J. Li. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling. 26 (2): 192–197.

    Article  CAS  PubMed  Google Scholar 

  9. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling. 13 (2): 85–94.

    Article  CAS  PubMed  Google Scholar 

  10. Laskin, D.L., V.R. Sunil, C.R. Gardner, and J.D. Laskin. 2011. Macrophages and tissue injury: Agents of defense or destruction? Annual Review of Pharmacology and Toxicology 51: 267–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arkell, R.S., R.J. Dickinson, M. Squires, S. Hayat, S.M. Keyse, and S.J. Cook. 2008. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling 20 (5): 836–843.

    Article  CAS  PubMed  Google Scholar 

  12. Eblaghie, M.C., J.S. Lunn, R.J. Dickinson, A.E. Munsterberg, J.J. Sanz-Ezquerro, E.R. Farrell, et al. 2003. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology : CB 13 (12): 1009–1018.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad, M.K., N.A. Abdollah, N.H. Shafie, N.M. Yusof, and S.R.A. Razak. 2018. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biology & Medicine 15 (1): 14–28.

    Article  CAS  Google Scholar 

  14. Li, C., D.A. Scott, E. Hatch, X. Tian, and S.L. Mansour. 2007. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development (Cambridge, England) 134 (1): 167–176.

    Article  CAS  Google Scholar 

  15. Maillet, M., N.H. Purcell, M.A. Sargent, A.J. York, Bueno OF, and J.D. Molkentin. 2008. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. The Journal of Biological Chemistry 283 (45): 31246–31255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng, B., P. Jiao, Z. Yang, and H. Xu. 2012. MEK/ERK pathway mediates insulin-promoted degradation of MKP-3 protein in liver cells. Molecular and Cellular Endocrinology. 361 (1–2): 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertin, S., B. Lozano-Ruiz, V. Bachiller, I. Garcia-Martinez, S. Herdman, P. Zapater, et al. 2015. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunology 8 (3): 505–515.

    Article  CAS  PubMed  Google Scholar 

  18. Hsu, W.C., M.Y. Chen, S.C. Hsu, L.R. Huang, C.Y. Kao, W.H. Cheng, C.H. Pan, M.S. Wu, G.Y. Yu, M.S. Hung, C.M. Leu, T.H. Tan, and Y.W. Su. 2018. DUSP6 mediates T cell receptor-engaged glycolysis and restrains TFH cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 115 (34): E8027–E8e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, G.Y., Y. Zhou, R.S. Ying, L. Shi, Y.Q. Cheng, J.P. Ren, et al. 2015. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology (Baltimore, Md) 61 (4): 1163–1173.

    Article  CAS  Google Scholar 

  20. Molina, G., A. Vogt, A. Bakan, W. Dai, P. Queiroz de Oliveira, W. Znosko, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology 5 (9): 680–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, Q.N., Y.F. Liao, Y.X. Lu, Y. Wang, J.H. Lu, Z.L. Zeng, Q.T. Huang, H. Sheng, J.P. Yun, D. Xie, H.Q. Ju, and R.H. Xu. 2018. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters 412: 243–255.

    Article  CAS  PubMed  Google Scholar 

  22. Missinato, M.A., M. Saydmohammed, D.A. Zuppo, K.S. Rao, G.W. Opie, B. Kuhn, et al. 2018. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development (Cambridge, England) 145 (5).

  23. Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 20 (7): 1126–1167.

    Article  CAS  Google Scholar 

  24. Jaramillo, M.C., and D.D. Zhang. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development 27 (20): 2179–2191.

    Article  CAS  Google Scholar 

  25. Lawrence, T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1 (6): a001651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, M., L. Yuan, X. Tan, D. Huang, X. Wang, Z. Zheng, et al. 2017. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nature Communications 8 (1): 2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, K.J., K.Y. Yoon, H.S. Yoon, S.R. Oh, and B.Y. Lee. 2015. Brazilein suppresses inflammation through inactivation of IRAK4-NF-kappaB pathway in LPS-induced Raw264.7 macrophage cells. International Journal of Molecular Sciences 16 (11): 27589–27598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.

    Article  CAS  PubMed  Google Scholar 

  29. Fujiwara, N., and K. Kobayashi. 2005. Macrophages in inflammation. Current Drug Targets Inflammation and Allergy 4 (3): 281–286.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu, S.F., Y.B. Lee, Y.C. Lee, A.L. Chung, M.K. Apaya, L.F. Shyur, C.F. Cheng, F.M. Ho, and T.C. Meng. 2018. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. The FEBS Journal 285 (9): 1593–1610.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H., Q. Guo, C. Wang, L. Yan, Y. Fu, M. Fan, X. Zhao, and M. Li. 2013. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17beta-estradiol-induced cell growth in endometrial adenocarcinoma cell. Molecular and Cellular Endocrinology 376 (1–2): 60–69.

    Article  CAS  PubMed  Google Scholar 

  32. Lu, J., X. Liu, Y. Liao, D. Wang, J. Chen, and S. Li. 2018. Jian-Pi-Yi-Shen formula regulates inflammatory cytokines production in 5/6 nephrectomized rats via suppression of NF-kappaB activation. Evidence-Based Complementary and Alternative Medicine : eCAM 2018: 7203547.

    Google Scholar 

  33. Wu, X., H. Gao, Y. Hou, J. Yu, W. Sun, Y. Wang, X. Chen, Y. Feng, Q.M. Xu, and X. Chen. 2018. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-kappaB, mitochondrial ROS, and MAPK pathways. Toxicology and Applied Pharmacology 355: 1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by School of Stomatology, Dalian Medical University, Dalian 116044, PR China.

Author information

Authors and Affiliations

Authors

Contributions

Fan Zhang and Bufu Tang performed the experiments. Fan Zhang analyzed the data. Zijiao Zhang and Di Xu contributed reagents, materials, and analysis tools. Fan Zhang and Bufu Tang wrote the paper. Fan Zhang edited the paper.

Corresponding author

Correspondence to Guowu Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Tang, B., Zhang, Z. et al. DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway. Inflammation 42, 672–681 (2019). https://doi.org/10.1007/s10753-018-0924-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0924-2

KEY WORDS

Navigation