Skip to main content

Advertisement

Log in

Anti-inflammatory Effect of DNA Polymeric Molecules in a Cell Model of Osteoarthritis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The DNA polymeric molecules polydeoxynucleotide (PDRN) and polynucleotide (PN) can be used as new alternative treatment for osteoarthritis (OA); however, the underlying mechanisms are not fully understood. In this study, we investigated the effect of PDRN and PN on gene-expression profiles in a cell model of OA using transcriptome analysis. Under hypoxic conditions, human chondrosarcoma cells were stressed for 24 h in the presence of interleukin (IL)-1β and subsequently treated with PDRN, PN, or hyaluronic acid (HA) for another 24 h, followed by transcriptome analysis. The results of the transcriptome study comprising differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded Kyoto Encyclopedia of Genes and Genomes pathways. Toll-like receptor (TLR)- and nucleotide-binding oligomerization domain-like receptor (NLR)-signaling pathways were related between the IL-1β group and the group treated with DNA polymeric molecules. The genes involved in the TLR- and NLR-signaling pathways were validated using real-time quantitative polymerase chain reaction and western blot. Among these genes, IL-6, IL-1β, IL-8, and chemokine (C-C motif) ligand 3 were dramatically upregulated in the IL-1β group, but significantly downregulated in the group treated with DNA polymeric molecules. Specifically, PN treatment resulted in a greater decrease in the expression of these genes as compared with PDRN treatment. Both PDRN and PN treatments were involved in the anti-inflammatory response associated with OA progression, with PN treatment exhibiting additional anti-inflammatory properties relative to PDRN treatment. These results provide insight into potential therapeutic approaches involving PDRN and PN treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OA:

osteoarthritis

PDRN:

polydeoxynucleotide

PN:

polynucleotide

NOD:

nucleotide-binding oligomerization domain

NLR:

nucleotide-binding oligomerization domain-like receptor

HA:

hyaluronic acid

PBS:

phosphate-buffered saline

DMEM-HG:

dulbecco’s modified Eagle medium-high glucose

DAVID:

Database for Annotation, Visualization, and Integrated Discovery

KEGG:

Kyoto Encyclopedia of Genes and Genomes

RT-PCR:

reverse transcription polymerase chain reaction

qRT-PCR:

real-time quantitative PCR

IL:

interleukin

CCL:

chemokine (C-C motif) ligand

CXCL:

C-X-C motif chemokine

LBP:

lipopolysaccharide-binding protein

TLR:

toll-like receptor

TNFAIP3:

tumor necrosis factor alpha-induced protein 3

CASP:

caspase apoptosis-related cysteine peptidase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

References

  1. Malfait, A.M. 2016. Osteoarthritis year in review 2015: biology. Osteoarthritis and Cartilage 24 (1): 21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Civinini, R., L. Nistri, C. Martini, B. Redl, G. Ristori, and M. Innocenti. 2013. Growth factors in the treatment of early osteoarthritis. Clin Cases Miner Bone Metab 10 (1): 26–29.

    PubMed  PubMed Central  Google Scholar 

  3. Giarratana, L.S., B.M. Marelli, C. Crapanzano, et al. 2014. A randomized double-blind clinical trial on the treatment of knee osteoarthritis: the efficacy of polynucleotides compared to standard hyaluronian viscosupplementation. The Knee 21 (3): 661–668.

    Article  PubMed  Google Scholar 

  4. Bonnet, C.S., and D.A. Walsh. 2005. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44 (1): 7–16.

    Article  CAS  Google Scholar 

  5. Orlowsky, E.W., and V.B. Kraus. 2015. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. The Journal of Rheumatology 42 (3): 363–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vincent, T.L. 2013. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Current Opinion in Pharmacology 13 (3): 449–454.

    Article  CAS  PubMed  Google Scholar 

  7. Torrero, J.I., and C. Martinez. 2015. New developments in the treatment of osteoarthritis—focus on biologic agents. Open Access Rheumatol 7: 33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu-Bryan, R., and R. Terkeltaub. 2015. Emerging regulators of the inflammatory process in osteoarthritis. Nature Reviews Rheumatology 11 (1): 35–44.

    Article  CAS  PubMed  Google Scholar 

  9. Wenham, C.Y., and P.G. Conaghan. 2010. The role of synovitis in osteoarthritis. Ther Adv Musculoskelet Dis 2 (6): 349–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology 7 (1): 33–42.

    Article  CAS  PubMed  Google Scholar 

  11. Ortolano, G.A., and B. Wenz. 2014. A review of the pathogenesis of osteoarthritis and the use of intra-articular platelet therapy for joint disease in animals and humans. Bone and Tissue Regeneration Insights 5: 1–13.

    Article  CAS  Google Scholar 

  12. Thellung, S., T. Florio, A. Maragliano, G. Cattarini, and G. Schettini. 1999. Polydeoxyribonucleotides enhance the proliferation of human skin fibroblasts: involvement of A2 purinergic receptor subtypes. Life Sciences 64 (18): 1661–1674.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobson, K.A., and Z.G. Gao. 2006. Adenosine receptors as therapeutic targets. Nature Reviews. Drug Discovery 5 (3): 247–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linden, J. 2005. Adenosine in tissue protection and tissue regeneration. Molecular Pharmacology 67 (5): 1385–1387.

    Article  CAS  PubMed  Google Scholar 

  15. Vanelli, R., P. Costa, S.M. Rossi, and F. Benazzo. 2010. Efficacy of intra-articular polynucleotides in the treatment of knee osteoarthritis: a randomized, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy 18 (7): 901–907.

    Article  PubMed  Google Scholar 

  16. Gebauer, M., J. Saas, F. Sohler, et al. 2005. Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthritis and Cartilage 13 (8): 697–708.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, M.S., J.H. Yu, M.Y. Lee, et al. 2016. Differential expression of extracellular matrix and adhesion molecules in fetal-origin amniotic epithelial cells of preeclamptic pregnancy. PLoS One 11 (5): e0156038.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Won, Y.H., M.Y. Lee, Y.C. Choi, et al. 2016. Elucidation of relevant neuroinflammation mechanisms using gene expression profiling in patients with amyotrophic lateral sclerosis. PLoS One 11 (11): e0165290.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baek, A., S.R. Cho, and S.H. Kim. 2017. Elucidation of gene expression patterns in the brain after spinal cord injury. Cell Transplantation 26 (7): 1286–1300.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25 (4): 402–408.

    Article  CAS  PubMed  Google Scholar 

  21. Malemud, C.J. 2010. Anticytokine therapy for osteoarthritis: evidence to date. Drugs & Aging 27 (2): 95–115.

    Article  CAS  Google Scholar 

  22. Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 3 (4): 177–192.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wojdasiewicz, P., L.A. Poniatowski, and D. Szukiewicz. 2014. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators of Inflammation 2014: 561459.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Afonso, V., R. Champy, D. Mitrovic, P. Collin, and A. Lomri. 2007. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint, Bone, Spine 74 (4): 324–329.

    Article  CAS  PubMed  Google Scholar 

  25. Mabey, T., and S. Honsawek. 2015. Cytokines as biochemical markers for knee osteoarthritis. World J Orthop 6 (1): 95–105.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gerard, C., and B.J. Rollins. 2001. Chemokines and disease. Nature Immunology 2 (2): 108–115.

    Article  CAS  PubMed  Google Scholar 

  27. Goldring, M.B., and M. Otero. 2011. Inflammation in osteoarthritis. Current Opinion in Rheumatology 23 (5): 471–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haringman, J.J., J. Ludikhuize, and P.P. Tak. 2004. Chemokines in joint disease: the key to inflammation? Annals of the Rheumatic Diseases 63 (10): 1186–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cronstein, B.N. 1994. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol (1985) 76 (1): 5–13.

    Article  CAS  Google Scholar 

  30. Gomez, G., and M.V. Sitkovsky. 2003. Targeting G protein-coupled A2a adenosine receptors to engineer inflammation in vivo. The International Journal of Biochemistry & Cell Biology 35 (4): 410–414.

    Article  CAS  Google Scholar 

  31. Hasko, G., C. Szabo, Z.H. Nemeth, V. Kvetan, S.M. Pastores, and E.S. Vizi. 1996. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. Journal of Immunology 157 (10): 4634–4640.

    CAS  Google Scholar 

  32. Link, A.A., T. Kino, J.A. Worth, et al. 2000. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. Journal of Immunology 164 (1): 436–442.

    Article  CAS  Google Scholar 

  33. Fakhari, A., and C. Berkland. 2013. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomaterialia 9 (7): 7081–7092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng Shu, X., Y. Liu, F.S. Palumbo, Y. Luo, and G.D. Prestwich. 2004. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25 (7–8): 1339–1348.

    Article  PubMed  Google Scholar 

  35. Vejlens, L. 1971. Glycosaminoglycans of human bone tissue. I. Pattern of compact bone in relation to age. Calcified Tissue Research 7 (2): 175–190.

Download references

Acknowledgments

This research was supported by grants from the National Research Foundation (2015M3A9B4067068, and 2017R1D1A1B03028855); the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI16C1012); and by EMBRI Grants 2015EMBRI SN0005 from the Eulji University.

Author information

Authors and Affiliations

Authors

Contributions

A.B. contributed to study conception and design, collection and/or assembly of data, and manuscript writing; M.G.K. contributed to manuscript writing; S.H.K. contributed to manuscript writing; and S.R.C. and H.J.K contributed to data analysis and interpretation, manuscript writing, and project supervision. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Sung-Rae Cho or Hyun Jung Kim.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Supplementary Table 1

Raw data for 18,892 differentially expressed transcripts. (XLSX 5279 kb)

Supplementary Table 2

Raw data for 185 differentially expressed transcripts. (XLSX 36 kb)

Supplementary Table 3

Raw data for 99 differentially expressed transcripts. (XLSX 23 kb)

Supplementary Table 4

Raw data for 44 differentially expressed transcripts. (XLSX 16 kb)

Supplementary Table 5

Raw data for 43 differentially expressed transcripts. (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, A., Kim, M., Kim, S.H. et al. Anti-inflammatory Effect of DNA Polymeric Molecules in a Cell Model of Osteoarthritis. Inflammation 41, 677–688 (2018). https://doi.org/10.1007/s10753-017-0722-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0722-2

KEY WORDS

Navigation