Skip to main content

Advertisement

Log in

Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Previous studies have shown that dexmedetomidine exerted anti-inflammatory effect on several animal models with inflammation, but the mechanism is not clear. This study intends to elucidate the anti-inflammatory mechanism of dexmedetomidine through the cholinergic anti-inflammatory pathway. To investigate this therapeutic potential of dexmedetomidine, a murine model of endotoxemia was established induced by lipopolysaccharide (LPS). Animals were assigned to one of four protocols. Protocol one: animals were randomly assigned to control group, dexmedetomidine group, and sterile saline group (n = 20 each), and these animals were used for survival analysis. The survival rate was assessed up to 120 h after endotoxin injection. Protocol two: animals were randomly assigned to one of four groups (n = 16 each): group 1 (group Saline), treated with sterile saline 15 min prior to endotoxin treatment (10 mg kg−1 over 2 min); group 2 (group Dex), treated with dexmedetomidine 15 min prior to endotoxin treatment; group 3 (group αBGT + Dex), treated with alpha-7 nicotinic acetylcholine receptors (α7nAChR) antagonist alpha-bungarotoxin (αBGT, 1 μg/kg) 15 min prior to dexmedetomidine treatment; group 4 (group saline + Dex), treated with equivalent sterile saline 15 min prior to dexmedetomidine treatment. Protocol three: animals were randomly assigned to one of two groups (n = 16 each): vagotomy group (group VNX + Dex), right cervical vagus nerve was exposed and transected; sham-operated group (group SHAM + Dex), the cervical vagus nerve was visualized, but was neither isolated from the surrounding tissues nor transected. Protocol four: animals were treated with dexmedetomidine (40 μg/kg) and sterile saline to observe the discharge activity of cervical vagus nerves by using BL-420F data acquisition and analysis system (n = 16 each). In the survival analysis groups, the survival rate of dexmedetomidine group was significantly higher than that of the endotoxemia group (65 versus 25 %, P < 0.01). Preemptive administration of dexmedetomidine significantly attenuated the cytokine response after lipopolysaccharide (LPS) induced endotoxemia (TNF-alpha, IL-1beta, IL-6, P < 0.01, respectively). However, preemptive administration of dexmedetomidine failed to suppress cytokine response in α-bungarotoxin group and vagotomy group (TNF-alpha, IL-1beta, IL-6, P > 0.05, respectively). Furthermore, preemptive administration of dexmedetomidine significantly increased the discharge frequency of cervical vagus nerves in comparison with sterile saline treatment (P < 0.01).Our results demonstrate that the preemptive administration of dexmedetomidine increases the activity of cervical vagus nerve and have the ability to successfully improve survival in experimental endotoxemia by inhibiting the inflammatory cytokines release. However, administration of dexmedetomidine to vagotomy or α7 nAChR antagonist pretreatment mice failed to suppress TNF levels, indicating that the vagus nerve and α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of dexmedetomidine. These findings show that central alpha-2 agonist dexmedetomidine suppresses systemic inflammation through vagal- and α7nAChR-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Casey, L.C., R.A. Balk, and R.C. Bone. 1993. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Annals of Internal Medicine 119: 771–778.

    Article  PubMed  CAS  Google Scholar 

  2. Damas, P., A. Reuter, P. Gysen, J. Demonty, M. Lamy, and P. Franchimont. 1989. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Critical Care Medicine 17: 975–978.

    Article  PubMed  CAS  Google Scholar 

  3. Wakabayashi, G., J.A. Gelfand, W.K. Jung, R.J. Connolly, J.F. Burke, and C.A. Dinarello. 1991. Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. Journal of Clinical Investigation 87: 1925–1935.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846–852.

    Article  PubMed  CAS  Google Scholar 

  5. Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458–462.

    Article  PubMed  CAS  Google Scholar 

  6. Tracey, K.J. 2002. The inflammatory reflex. Nature 420: 853–859.

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi, T., K. Yamamoto, N. Ohmoto, K. Ohta, and T. Kobayashi. 2000. Effects of propofol on hemodynamic and inflammatory responses to endotoxemia in rats. Critical Care Medicine 28: 1101–1106.

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi, T., and K. Yamamoto. 2005. Anti-inflammatory effects of intravenous anesthetics on endotoxemia. Mini Reviews in Medicinal Chemistry 5: 241–245.

    Article  PubMed  CAS  Google Scholar 

  9. Hsu, Y.W., L.I. Cortinez, K.M. Robertson, J.C. Keifer, S.T. Sum-Ping, E.W. Moretti, C.C. Young, D.R. Wright, D.B. Macleod, and J. Somma. 2004. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 101: 1066–1076.

    Article  PubMed  CAS  Google Scholar 

  10. Pandharipande, P.P., B.T. Pun, D.L. Herr, M. Maze, T.D. Girard, R.R. Miller, A.K. Shintani, J.L. Thompson, J.C. Jackson, S.A. Deppen, et al. 2007. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 298: 2644–2653.

    Article  PubMed  CAS  Google Scholar 

  11. Hofer, S., J. Steppan, T. Wagner, B. Funke, C. Lichtenstern, E. Martin, B.M. Graf, A. Bierhaus, and M.A. Weigand. 2009. Central sympatholytics prolong survival in experimental sepsis. Critical Care 13: R11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taniguchi, T., A. Kurita, K. Kobayashi, K. Yamamoto, and H. Inaba. 2008. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. Journal of Anesthesia 22: 221–228.

    Article  PubMed  Google Scholar 

  13. Gu, J., J. Chen, P. Xia, G. Tao, H. Zhao, and D. Ma. 2011. Dexmedetomidine attenuates remote lung injury induced by renal ischemia-reperfusion in mice. Acta Anaesthesiologica Scandinavica 55: 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  14. Gu, J., P. Sun, H. Zhao, H.R. Watts, R.D. Sanders, N. Terrando, P. Xia, M. Maze, and D. Ma. 2011. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Critical Care 15: R153.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sica, D.A. 2007. Centrally acting antihypertensive agents: an update. Journal of Clinical Hypertension (Greenwich, Conn.) 9: 399–405.

    Article  CAS  Google Scholar 

  16. Rittirsch, D., M.A. Flierl, and P.A. Ward. 2008. Harmful molecular mechanisms in sepsis. Nature Reviews Immunology 8: 776–787.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Taniguchi, T., Y. Kidani, H. Kanakura, Y. Takemoto, and K. Yamamoto. 2004. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Critical Care Medicine 32: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  18. Seok, J., H.S. Warren, A.G. Cuenca, M.N. Mindrinos, H.V. Baker, W. Xu, D.R. Richards, G.P. McDonald-Smith, H. Gao, L. Hennessy, et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proceedings of the National Academy of Sciences of the United States of America 110: 3507–3512.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265: 663–679.

    Article  PubMed  CAS  Google Scholar 

  20. van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. Journal of Infectious Diseases 191: 2138–2148.

    Article  PubMed  Google Scholar 

  21. Kessler, W., T. Traeger, A. Westerholt, F. Neher, M. Mikulcak, A. Muller, S. Maier, and C.D. Heidecke. 2006. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis. Langenbeck’s Archives of Surgery 391: 83–87.

    Article  PubMed  Google Scholar 

  22. van Westerloo, D.J., I.A. Giebelen, S. Florquin, M.J. Bruno, G.J. Larosa, L. Ulloa, K.J. Tracey, and T. van der Poll. 2006. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130: 1822–1830.

    Article  PubMed  Google Scholar 

  23. Guarini, S., D. Altavilla, M.M. Cainazzo, D. Giuliani, A. Bigiani, H. Marini, G. Squadrito, L. Minutoli, A. Bertolini, R. Marini, et al. 2003. Efferent vagal fibre stimulation blunts nuclear factor-κB activation and protects against hypovolemic hemorrhagic shock. Circulation 107: 1189–1194.

    Article  PubMed  Google Scholar 

  24. Bernik, T.R., S.G. Friedman, M. Ochani, R. DiRaimo, S. Susarla, C.J. Czura, and K.J. Tracey. 2002. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal of Vascular Surgery 36: 1231–1236.

    Article  PubMed  Google Scholar 

  25. Huston, J.M., M. Gallowitsch-Puerta, M. Ochani, K. Ochani, R. Yuan, M. Rosas-Ballina, M. Ashok, R.S. Goldstein, S. Chavan, V.A. Pavlov, et al. 2007. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Critical Care Medicine 35: 2762–2768.

    Article  PubMed  Google Scholar 

  26. van Westerloo, D.J., I.A. Giebelen, J.C. Meijers, J. Daalhuisen, A.F. de Vos, M. Levi, and T. van der Poll. 2006. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis 4: 1997–2002.

    Article  PubMed  Google Scholar 

  27. Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, et al. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384–388.

    Article  PubMed  CAS  Google Scholar 

  28. Pavlov, V.A., M. Ochani, L.H. Yang, M. Gallowitsch-Puerta, K. Ochani, X. Lin, J. Levi, W.R. Parrish, M. Rosas-Ballina, C.J. Czura, et al. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Critical Care Medicine 35: 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, Y., and J. Li. 2012. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NFkappabeta and myosin light-chain kinase pathways. Biochemical and Biophysical Research Communications 428: 321–326.

  30. Shimizu, S., T. Akiyama, T. Kawada, Y. Sata, M. Mizuno, A. Kamiya, T. Shishido, M. Inagaki, M. Shirai, S. Sano, and M. Sugimachi. 2012. Medetomidine, an α2-adrenergic agonist, activates cardiac vagal nerve through modulation of baroreflex control. Circulation Journal 76: 152–159.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Hu, B., Li, Z. et al. Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway. Inflammation 37, 1763–1770 (2014). https://doi.org/10.1007/s10753-014-9906-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9906-1

KEY WORDS

Navigation