Skip to main content
Log in

Anti-inflammatory Potential of Alpha-Linolenic Acid Mediated Through Selective COX Inhibition: Computational and Experimental Data

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The present work investigates the anti-inflammatory activity of alpha-linolenic acid (ALA) and linoleic acid (LA) using computational and experimental analysis. The binding affinity of ALA and LA was appraised for cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), and 5-lipoxygenase (5-LOX) using AutoDock 4.2 and AutoDock Vina 1.1.2. Anti-inflammatory activity of ALA (2 and 4 ml/kg, i.p.) (55.65 % v/v) and LA (2 and 4 ml/kg, i.p.) (55 % v/v) was further assayed using the rat paw edema test against a variety of phlogistic agents including carrageenan, arachidonic acid, prostaglandin, and leukotriene, respectively. ALA (2 and 4 ml/kg, i.p.) and LA (2 and 4 ml/kg, i.p.) were further tested for their efficacy against complete Freund’s adjuvant (CFA)-induced (0.05 ml) arthritis in albino rats. Following CFA-induced arthritis, ALA and LA were tested for their inhibitory proficiency against COX-1, COX-2, and 5-LOX in vitro. The present study commends that the anti-inflammatory potential of ALA could be attributed to COX inhibition, in particular, COX-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Enig, M.G. 2005. Know your fats, 249. Bethesda: Silver Spring.

    Google Scholar 

  2. Cunnane, S.C. 2003. Problems with essential fatty acids: time for a new paradigm. Progress in Lipid Research 42(6): 544–568.

    Article  CAS  PubMed  Google Scholar 

  3. Piomelli, Daniele 2000. Arachidonic acid. Neuropsychopharmacology: The fifth generation of progress. http://www.acnp.org/g4/GN401000059/Default.htm. Accessed 25 July 2013.

  4. Johnson, M.M., D.D. Swan, M.E. Surette, J. Stegner, T. Chilton, A.N. Fonteh, and F.H. Chilton. 1997. Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. Journal of Nutrition 127(8): 1435–1444.

    CAS  PubMed  Google Scholar 

  5. Chang, C.S., H.L. Sun, C.K. Lii, H.W. Chen, P.Y. Chen, and K.L. Liu. 2010. Gamma-linolenic acid inhibits inflammatory response by regulating NF-κB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33(1): 46–57.

    Article  CAS  PubMed  Google Scholar 

  6. Hontecillas, R., M. O’Shea, A. Einerhand, M. Diguardo, and J. Bassaganya-Riera. 2009. Activation of PPAR gamma and alpha by punicinic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. Journal of the American College of Nutrition 28(2): 184–195.

    Article  CAS  PubMed  Google Scholar 

  7. Serhan, N.C. 2006. Resolvins and protectins: novel lipid mediators in anti-inflammation and resolution. Scandinavian Journal of Food and Nutrition 50(S2): 68–78.

    Article  Google Scholar 

  8. Ziboh, V.A., S. Naguwa, K. Vang, J. Wineinger, B.M. Morrissey, M. Watnik, and M.E. Gershwin. 2004. Suppression of leukotriene B4 generation by ex-vivo neutrophils isolated from asthma patients on dietary supplementation with gamma linolenic acid-containing borage oil: possible implication in asthma. Clinical and Developmental Immunology 11(1): 13–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Calder, C.P. 2006. n-3 polyunsaturated fatty acids, inflammation and inflammatory diseases. American Journal of Clinical Nutrition 83: 1505–1519.

    Google Scholar 

  10. Russo, L.G. 2009. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochemical Pharmacology 77: 937–946.

    Article  CAS  PubMed  Google Scholar 

  11. Kapoor, R., and Y.S. Huang. 2006. Gamma linolenic acid: an anti-inflammatory omega-6 fatty acids. Current Pharmaceutical Biotechnology 7(6): 531–534.

    Article  CAS  PubMed  Google Scholar 

  12. Kaithwas, G., and D.K. Majumdar. 2010. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats. Inflammopharmacology 18: 127–136.

    Article  CAS  PubMed  Google Scholar 

  13. Kaithwas, G., A. Mukherjee, A.K. Chaurasia, and D.K. Majumdar. 2011. Anti-inflammatory, analgesic and antipyretic activities of Linum usitatissimum L. (flaxseed/linseed) fixed oil. Indian Journal of Experimental Biology 49(12): 9.

    Google Scholar 

  14. Kaithwas, G., and D.K. Majumdar. 2013. Effect of L. usitatissimum: (flaxseed/linseed) fixed oil against distinct phases of inflammation. ISRN Inflammation 2013: 1–4.

    Article  Google Scholar 

  15. Kaithwas, G., A. Mukerjee, P. Kumar, and D.K. Majumdar. 2011. Linum usitatissimum (linseed/flaxseed) fixed oil: antimicrobial activity and efficacy in Bovine mastitis. Inflammapharmacology 19(1): 45–52.

    Article  CAS  Google Scholar 

  16. Pruitt, K.D., T. Tatusova, W. Klimke, and D.R. Maglott. 2009. NCBI reference sequences: current status, policy and new initiatives. Nucleic Acids Research 37: 32–36.

    Article  Google Scholar 

  17. Chen, C.C., J.K. Hwang, and J.M. Yang. 2006. (PS)2: protein structure prediction server. Nucleic Acids Research 34: 152–157.

    Article  Google Scholar 

  18. Bates, P.A., L.A. Kelley, R.M. MacCalum, and M.J.E. Sternberg. 2001. Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5: 39–46.

    Article  PubMed  Google Scholar 

  19. Contreras, M.B., and P.A. Bates. 2002. Domain fishing: a first step in protein comparative modeling. Bioinformatics 18: 1141–1142.

    Article  Google Scholar 

  20. Hung, L.H., S.C. Ngan, T. Liu, and R. Samudrala. 2005. PROTINFO: new algorithms for enhanced protein structure prediction. Nucleic Acids Research 33: 77–80.

    Article  Google Scholar 

  21. Martí-Renom, M.A., A.C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. 2000. Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure 29: 291–325.

    Article  PubMed  Google Scholar 

  22. Colovos, C., and T.O. Yeates. 1993. Verification of protein structures: patterns of non-bonded atomic interactions. Protein Science 2: 1511–1519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Guex, N., and M.C. Peitsch. 1996. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

    Article  Google Scholar 

  24. Trott, O., and A.J. Olson. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multi threading. Journal of Computational Chemistry 31: 455–461.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Winter, C.A., E.A. Risley, and G.W. Nuss. 1962. Carrageenan-induced edema in rat paw as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547.

    Article  CAS  PubMed  Google Scholar 

  26. Newbould, B.B. 1963. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. British Journal of Pharmacology and Chemotherapy 21: 127–136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson. 2009. AutoDock4 and AutoDock Tools 4: automated docking with selective receptor flexibility. Journal of Computational Chemistry 16: 2785–2791.

    Article  Google Scholar 

  28. Hardman, J.G., and L.E. Limbird. 2001. Goodman & Gillman’s the pharmacological basis of therapeutics. New York: McGraw-Hill.

    Google Scholar 

  29. Henderson, B., E.R. Pettipher, and G.A. Higgs. 1987. Mediators of rheumatoid arthritis. British Medical Bulletin 43(2): 415–428.

    CAS  PubMed  Google Scholar 

  30. Feldmann, M., and R.N. Maini. 1999. The role of cytokines in the pathogenesis of rheumatoid arthritis. Rheumatology 38(2): 3–7.

    CAS  PubMed  Google Scholar 

  31. Rang, H.P., M.M. Dale, J.M. Ritter, and K. Moore. 2003. Pharmacology, 5th ed, 217–243. Edinburg: Churchill Livingstone.

    Google Scholar 

  32. Kaneko, M., T. Tomita, T. Nakase, Y. Ohsawa, H. Seki, E. Takeuchi, et al. 2001. Expression of proteinases and inflammatory cytokines in subchondral bone regions in the destructive joint in rheumatoid arthritis. Rheumatology 40: 247–255.

    Article  CAS  PubMed  Google Scholar 

  33. Arend, W.P., and J.M. Dayer. 1995. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor-α in rheumatoid arthritis. Arthritis and Rheumatism 38: 151–160.

    Article  CAS  PubMed  Google Scholar 

  34. Dayer, J.M., and H. Fenner. 1992. The role of cytokines and their inhibitors in arthritis. Baillieres Clinical Rheumatology 6: 485–516.

    Article  CAS  Google Scholar 

  35. Moreland, L.W., M.H. Schiff, S.W. Baumgartner, E.A. Tindall, R.M. Fleisch-mann, K. Bulpitt, et al. 1999. Etanercept therapy in rheumatoid arthritis: a randomized controlled trial. Annals of Internal Medicine 130: 478–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Arbro Pharmaceuticals, Kirti Nagar, New Delhi, for providing the drugs mentioned in the text as gift sample. RA is receiving SRF from Ministry of Human Resource and Development, Government of India, for pursuing the Doctoral program.

Conflict of Interest

The authors declare that they do not have conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Kaithwas.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplementary Figure I

(DOCX 22 kb)

Supplementary Figure II

(DOCX 60 kb)

Supplementary Table I

(DOCX 14 kb)

Supplementary Table II

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Kaithwas, G. Anti-inflammatory Potential of Alpha-Linolenic Acid Mediated Through Selective COX Inhibition: Computational and Experimental Data. Inflammation 37, 1297–1306 (2014). https://doi.org/10.1007/s10753-014-9857-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9857-6

KEY WORDS

Navigation