Skip to main content

Advertisement

Log in

Propofol Attenuates Lipopolysaccharide-Induced Monocyte Chemoattractant Protein-1 Production Through Enhancing apoM and foxa2 Expression in HepG2 Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Monocyte chemoattractant protein-1 (MCP-1) is a cytokine that mediates the influx of cells to sites of inflammation. Our group recently reported that propofol exerted an anti-inflammatory effect and could inhibit lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines. However, the effect and possible mechanisms of propofol on MCP-1 expression remain unclear. LPS-stimulated HepG2 cells were treated with 50 μM propofol for 0, 6, 12, and 24 h, respectively. The transcript and protein levels were measured by real-time quantitative PCR and Western blot analyses, respectively. We found that propofol markedly decreased both MCP-1 messenger RNA (mRNA) and protein levels in LPS-stimulated HepG2 cells in a time-dependent manner. Expression of apolipoprotein M (apoM) and forkhead box protein A2 (foxa2) was increased by propofol treatment in HepG2 cells. In addition, the inhibitory effect of propofol on MCP-1 expression was significantly abolished by small interfering RNA against apoM and foxa2 in LPS-stimulated HepG2 cells. Propofol attenuates LPS-induced MCP-1 production through enhancing apoM and foxa2 expression in HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Marik, P.E. 2004. Propofol: Therapeutic indications and side-effects. Current Pharmaceutical Design 10: 3639–3649.

    Article  CAS  PubMed  Google Scholar 

  2. Vasileiou, I., T. Xanthos, E. Koudouna, D. Perrea, C. Klonaris, et al. 2009. Propofol: A review of its non-anaesthetic effects. European Journal of Pharmacology 605: 1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Acquaviva, R., A. Campisi, P. Murabito, G. Raciti, R. Avola, et al. 2004. Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: An alternative protective mechanism. Anesthesiology 101: 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Conde, P., J.M. Rodriguez-Lopez, J.L. Nicolas, F.S. Lozano, F.J. Garcia-Criado, et al. 2008. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesthesia and Analgesia 106: 371–378.

    Article  CAS  PubMed  Google Scholar 

  5. Mangge, H., K. Becker, D. Fuchs, and J.M. Gostner. 2014. Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology 6: 462–477.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Golia, E., G. Limongelli, F. Natale, F. Fimiani, V. Maddaloni, et al. 2014. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Current Atherosclerosis Reports 16: 435.

    Article  PubMed  Google Scholar 

  7. Kolattukudy, P.E., and J. Niu. 2012. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circulation Research 110: 174–189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chiu, W.T., Y.L. Lin, C.W. Chou, and R.M. Chen. 2009. Propofol inhibits lipoteichoic acid-induced iNOS gene expression in macrophages possibly through downregulation of toll-like receptor 2-mediated activation of Raf-MEK1/2-ERK1/2-IKK-NFkappaB. Chemico-Biological Interactions 181: 430–439.

    Article  CAS  PubMed  Google Scholar 

  9. Hsing, C.H., M.C. Lin, P.C. Choi, W.C. Huang, J.I. Kai, et al. 2011. Anesthetic propofol reduces endotoxic inflammation by inhibiting reactive oxygen species-regulated Akt/IKKbeta/NF-kappaB signaling. PloS One 6: e17598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chen, R.M., T.G. Chen, T.L. Chen, L.L. Lin, C.C. Chang, et al. 2005. Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Annals of the New York Academy of Sciences 1042: 262–271.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, X., Y.W. Hu, Z.L. Zhao, L. Zheng, Y.R. Qiu, et al. 2013. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner. Archives of Biochemistry and Biophysics 533: 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Strecker, J.K., J. Minnerup, B. Gess, E.B. Ringelstein, W.R. Schabitz, et al. 2011. Monocyte chemoattractant protein-1-deficiency impairs the expression of IL-6, IL-1β and G-CSF after transient focal ischemia in mice. PloS One 6: e25863.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Panasiuk, A., D. Prokopowicz, and B. Panasiuk. 2004. Monocyte chemotactic protein-1 and soluble adhesion molecules as possible prognostic markers of the efficacy of antiviral treatment in chronic hepatitis C. World Journal of Gastroenterology 10: 3639–3642.

    CAS  PubMed  Google Scholar 

  14. Takada, Y., T. Hisamatsu, N. Kamada, M.T. Kitazume, H. Honda, et al. 2010. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. Journal of Immunology 184: 2671–2676.

    Article  CAS  Google Scholar 

  15. Niu, J., and P.E. Kolattukudy. 2009. Role of MCP-1 in cardiovascular disease: Molecular mechanisms and clinical implications. Clinical Science (London) 117: 95–109.

    Article  CAS  Google Scholar 

  16. Deshmane, S.L., S. Kremlev, S. Amini, and B.E. Sawaya. 2009. Monocyte chemoattractant protein-1 (MCP-1): An overview. Journal of Interferon and Cytokine Research 29: 313–326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. O’Hayre, M., C.L. Salanga, T.M. Handel, and S.J. Allen. 2008. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. The Biochemical Journal 409: 635–649.

    Article  PubMed  Google Scholar 

  18. Shin, W.S., A. Szuba, and S.G. Rockson. 2002. The role of chemokines in human cardiovascular pathology: enhanced biological insights. Atherosclerosis 160: 91–102.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, N., and B. Dahlback. 1999. A novel human apolipoprotein (apoM). Journal of Biological Chemistry 274: 31286–31290.

    Article  CAS  PubMed  Google Scholar 

  20. Duan, J., B. Dahlback, and B.O. Villoutreix. 2001. Proposed lipocalin fold for apolipoprotein M based on bioinformatics and site-directed mutagenesis. FEBS Letters 499: 127–132.

    Article  CAS  PubMed  Google Scholar 

  21. Sevvana, M., J. Ahnstrom, C. Egerer-Sieber, H.A. Lange, B. Dahlback, et al. 2009. Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. Journal of Molecular Biology 393: 920–936.

    Article  CAS  PubMed  Google Scholar 

  22. Luo, G., X. Zhang, P. Nilsson-Ehle, and N. Xu. 2004. Apolipoprotein M. Lipids in Health and Disease 3: 21.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Richter, S., D.Q. Shih, E.R. Pearson, C. Wolfrum, S.S. Fajans, et al. 2003. Regulation of apolipoprotein M gene expression by MODY3 gene hepatocyte nuclear factor-1alpha: Haploinsufficiency is associated with reduced serum apolipoprotein M levels. Diabetes 52: 2989–2995.

    Article  CAS  PubMed  Google Scholar 

  24. Wolfrum, C., M.N. Poy, and M. Stoffel. 2005. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine 11: 418–422.

    Article  CAS  PubMed  Google Scholar 

  25. Tolle, M., A. Pawlak, M. Schuchardt, A. Kawamura, U.J. Tietge, et al. 2008. HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 1542–1548.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, et al. 2008. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199: 19–26.

    Article  CAS  PubMed  Google Scholar 

  27. Ang, S.L., A. Wierda, D. Wong, K.A. Stevens, S. Cascio, et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: Involvement of HNF3/forkhead proteins. Development 119: 1301–1315.

    CAS  PubMed  Google Scholar 

  28. Sund, N.J., M.Z. Vatamaniuk, M. Casey, S.L. Ang, M.A. Magnuson, et al. 2001. Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes and Development 15: 1706–1715.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lee, C.S., J.R. Friedman, J.T. Fulmer, and K.H. Kaestner. 2005. The initiation of liver development is dependent on Foxa transcription factors. Nature 435: 944–947.

    Article  CAS  PubMed  Google Scholar 

  30. Mirosevich, J., N. Gao, A. Gupta, S.B. Shappell, R. Jove, et al. 2006. Expression and role of Foxa proteins in prostate cancer. Prostate 66: 1013–1028.

    Article  CAS  PubMed  Google Scholar 

  31. Wolfrum, C., J.J. Howell, E. Ndungo, and M. Stoffel. 2008. Foxa2 activity increases plasma high density lipoprotein levels by regulating apolipoprotein M. Journal of Biological Chemistry 283: 16940–16949.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, J.Y., Y.W. Hu, S.F. Li, Y.R. Hu, X. Ma, et al. 2014. Dihydrocapsaicin down-regulates apoM expression through inhibiting Foxa2 expression and enhancing LXRα expression in HepG2 cells. Lipids in Health and Disease 13: 50.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ziraldo, C., Y. Vodovotz, R.A. Namas, K. Almahmoud, V. Tapias, et al. 2013. Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies. PloS One 8: e79804.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tacke, F. 2012. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis & Tissue Repair 5: S27.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Natural Sciences Foundation of China (grant numbers 81271905, 81301489, and 81472009), Science and Technology Planning Project of Guangdong Province (2011B031800090), and Medical Scientific Research Foundation of Guangdong Province (A2011374).

Conflict of Interest

The authors declare no conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Wei Hu or Zai-Sheng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhao, JY., Zhao, ZL. et al. Propofol Attenuates Lipopolysaccharide-Induced Monocyte Chemoattractant Protein-1 Production Through Enhancing apoM and foxa2 Expression in HepG2 Cells. Inflammation 38, 1329–1336 (2015). https://doi.org/10.1007/s10753-014-0104-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0104-y

KEY WORDS

Navigation