Skip to main content

Advertisement

Log in

IRAK1-Dependent Signaling Mediates Mortality in Polymicrobial Sepsis

  • Published:
Inflammation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Interleukin-1 receptor-associated kinase (IRAK1) is a key regulatory protein in TLR/IL1R-mediated cell activation during inflammatory response. Studies indicated that pending on the nature of the used inflammatory model, downregulation of IRAK1 may be beneficial or detrimental. However, the role of IRAK1 in affecting outcome in polymicrobial sepsis is unknown. We tested this question using an IRAK1-deficient mouse strain and cecal ligation and puncture (CLP) procedure, which is a clinically relevant rodent septic model. Sepsis-induced mortality was markedly lower in IRAK1-deficient mice (35 %) compared to WT (85 %). Sepsis-induced increases in blood IL-6 and IL-10 levels were blunted at 6 h post-CLP in IRAK1 deficiency compared to WT, but cytokine levels were similar at 20 h post-CLP. Sepsis-induced blood granulocytosis and depletion of splenic B cells were also blunted in IRAK1-deficient mice as compared to WT. Analysis of TLR-mediated cytokine responses by IRAK1-deficient and WT macrophages ex vivo indicated a TLR4-dependent downregulation of IL-6 and IL1β in IRAK1 deficiency, whereas TLR2-dependent responses were unaffected. TLR7/8-mediated IL-6, IL1β, and IL-10 production was also blunted in IRAK1 macrophages as compared to WT. The study shows that IRAK1 deficiency impacts multiple TLR-dependent pathways and decreases early cytokine responses following polymicrobial sepsis. The delayed inflammatory response caused by the lack of IRAK1 expression is beneficial, as it manifests a marked increased chance of survival after polymicrobial sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PMN:

Polymorphonuclear neutrophils

BM:

Bone marrow

References

  1. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews Immunology 4: 499–511.

    Article  PubMed  CAS  Google Scholar 

  2. Gottipati, S., N.L. Rao, and W.P. Fung-Leung. 2008. IRAK1: A critical signaling mediator of innate immunity. Cellular Signalling 20: 269–276.

    Article  PubMed  CAS  Google Scholar 

  3. Janssens, S., and R. Beyaert. 2003. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Molecular Cell 11: 293–302.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas, J.A., J.L. Allen, M. Tsen, T. Dubnicoff, J. Danao, X.C. Liao, Z. Cao, and S.A. Wasserman. 1999. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. Journal of Immunology 163: 978–984.

    CAS  Google Scholar 

  5. Tiwari, R.L., V. Singh, A. Singh, and M.K. Barthwal. 2011. IL-1R-associated kinase-1 mediates protein kinase Cdelta-induced IL-1beta production in monocytes. Journal of Immunology 187: 2632–2645.

    Article  CAS  Google Scholar 

  6. Huang, Y., T. Li, D.C. Sane, and L. Li. 2004. IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. Journal of Biological Chemistry 279: 51697–51703.

    Article  PubMed  CAS  Google Scholar 

  7. Uematsu, S., S. Sato, M. Yamamoto, T. Hirotani, H. Kato, F. Takeshita, M. Matsuda, C. Coban, K.J. Ishii, T. Kawai, O. Takeuchi, and S. Akira. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. The Journal of Experimental Medicine 201: 915–923.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, Y.C., D.P. Simmons, X. Li, D.W. Abbott, W.H. Boom, and C.V. Harding. 2012. TLR2 signaling depletes IRAK1 and inhibits induction of type I IFN by TLR7/9. Journal of Immunology 188: 1019–1026.

    Article  CAS  Google Scholar 

  9. Thomas, J.A., M.F. Tsen, D.J. White, and J.W. Horton. 2002. IRAK contributes to burn-triggered myocardial contractile dysfunction. American Journal of Physiology - Heart and Circulatory Physiology 283: H829–H836.

    PubMed  CAS  Google Scholar 

  10. Thomas, J.A., S.B. Haudek, T. Koroglu, M.F. Tsen, D.D. Bryant, D.J. White, D.F. Kusewitt, J.W. Horton, and B.P. Giroir. 2003. IRAK1 deletion disrupts cardiac Toll/IL-1 signaling and protects against contractile dysfunction. American Journal of Physiology - Heart and Circulatory Physiology 285: H597–H606.

    PubMed  CAS  Google Scholar 

  11. Deng, C., C. Radu, A. Diab, M.F. Tsen, R. Hussain, J.S. Cowdery, M.K. Racke, and J.A. Thomas. 2003. IL-1 receptor-associated kinase 1 regulates susceptibility to organ-specific autoimmunity. Journal of Immunology 170: 2833–2842.

    CAS  Google Scholar 

  12. Jacob, C.O., J. Zhu, D.L. Armstrong, M. Yan, J. Han, X.J. Zhou, J.A. Thomas, A. Reiff, B.L. Myones, J.O. Ojwang, K.M. Kaufman, M. Klein-Gitelman, D. McCurdy, L. Wagner-Weiner, E. Silverman, J. Ziegler, J.A. Kelly, J.T. Merrill, J.B. Harley, R. Ramsey-Goldman, L.M. Vila, S.C. Bae, T.J. Vyse, G.S. Gilkeson, P.M. Gaffney, K.L. Moser, C.D. Langefeld, R. Zidovetzki, and C. Mohan. 2009. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America 106: 6256–6261.

    Article  PubMed  CAS  Google Scholar 

  13. Swantek, J.L., M.F. Tsen, M.H. Cobb, and J.A. Thomas. 2000. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. Journal of Immunology 164: 4301–4306.

    CAS  Google Scholar 

  14. Albrecht, V., T.P. Hofer, B. Foxwell, M. Frankenberger, and L. Ziegler-Heitbrock. 2008. Tolerance induced via TLR2 and TLR4 in human dendritic cells: Role of IRAK-1. BMC Immunology 9: 69.

    Article  PubMed  Google Scholar 

  15. Xiong, Y., F. Qiu, W. Piao, C. Song, L.M. Wahl, and A.E. Medvedev. 2011. Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and IkappaB kinase gamma and increases A20 expression. Journal of Biological Chemistry 286: 7905–7916.

    Article  PubMed  CAS  Google Scholar 

  16. Verdrengh, M., J.A. Thomas, and O.H. Hultgren. 2004. IL-1 receptor-associated kinase 1 mediates protection against Staphylococcus aureus infection. Microbes and Infection 6: 1268–1272.

    Article  PubMed  CAS  Google Scholar 

  17. Ebong, S., D. Call, J. Nemzek, G. Bolgos, D. Newcomb, and D. Remick. 1999. Immunopathologic alterations in murine models of sepsis of increasing severity. Infection and Immunity 67: 6603–6610.

    PubMed  CAS  Google Scholar 

  18. Remick, D.G., D.E. Newcomb, G.L. Bolgos, and D.R. Call. 2000. Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture. Shock 13: 110–116.

    Article  PubMed  CAS  Google Scholar 

  19. Remick, D.G., and P.A. Ward. 2005. Evaluation of endotoxin models for the study of sepsis. Shock 24(Suppl 1): 7–11.

    Article  PubMed  CAS  Google Scholar 

  20. Baker, C.C., I.H. Chaudry, H.O. Gaines, and A.E. Baue. 1983. Evaluation of factors affecting mortality-rate after sepsis in a murine cecal ligation and puncture model. Surgery 94: 331–335.

    PubMed  CAS  Google Scholar 

  21. Chandra, R., S. Federici, Z.H. Nemeth, B. Horvath, P. Pacher, G. Hasko, E.A. Deitch, and Z. Spolarics. 2011. Female X-chromosome mosaicism for NOX2 deficiency presents unique inflammatory phenotype and improves outcome in polymicrobial sepsis. Journal of Immunology 186: 6465–6473.

    Article  CAS  Google Scholar 

  22. Nemeth, Z.H., B. Csoka, J. Wilmanski, D. Xu, Q. Lu, C. Ledent, E.A. Deitch, P. Pacher, Z. Spolarics, and G. Hasko. 2006. Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. Journal of Immunology 176: 5616–5626.

    CAS  Google Scholar 

  23. Wilmanski, J., M. Siddiqi, E.A. Deitch, and Z. Spolarics. 2005. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. Journal of Leukocyte Biology 78: 85–94.

    Article  PubMed  CAS  Google Scholar 

  24. Chandra, R., E. Villanueva, E. Feketova, G.W. Machiedo, G. Hasko, E.A. Deitch, and Z. Spolarics. 2008. Endotoxemia down-regulates bone marrow lymphopoiesis but stimulates myelopoiesis: the effect of G6PD deficiency. Journal of Leukocyte Biology 83: 1541–1550.

    Article  PubMed  CAS  Google Scholar 

  25. Deitch, E.A. 2005. Rodent models of intra-abdominal infection. Shock 24(Suppl 1): 19–23.

    Article  PubMed  Google Scholar 

  26. Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends in Microbiology 19: 198–208.

    Article  PubMed  CAS  Google Scholar 

  27. Remick, D.G., G.R. Bolgos, J. Siddiqui, J. Shin, and J.A. Nemzek. 2002. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17: 463–467.

    Article  PubMed  Google Scholar 

  28. Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 73: 2751–2757.

    Article  PubMed  CAS  Google Scholar 

  29. Kotake, Y., D.R. Moore, A. Vasquez-Walden, T. Tabatabaie, and H. Sang. 2003. Antioxidant amplifies antibiotic protection in the cecal ligation and puncture model of microbial sepsis through interleukin-10 production. Shock 19: 252–256.

    Article  PubMed  CAS  Google Scholar 

  30. Hiraki, S., S. Ono, H. Tsujimoto, M. Kinoshita, R. Takahata, H. Miyazaki, D. Saitoh, and K. Hase. 2012. Neutralization of interleukin-10 or transforming growth factor-beta decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Surgery 151: 313–322.

    Article  PubMed  Google Scholar 

  31. Toubiana, J., E. Courtine, F. Pene, V. Viallon, P. Asfar, C. Daubin, C. Rousseau, C. Chenot, F. Ouaaz, D. Grimaldi, A. Cariou, J.D. Chiche, and J.P. Mira. 2010. IRAK1 functional genetic variant affects severity of septic shock. Critical Care Medicine 38: 2287–2294.

    Article  PubMed  CAS  Google Scholar 

  32. Arcaroli, J., E. Silva, J.P. Maloney, Q. He, D. Svetkauskaite, J.R. Murphy, and E. Abraham. 2006. Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis. American Journal of Respiratory and Critical Care Medicine 173: 1335–1341.

    Article  PubMed  CAS  Google Scholar 

  33. Lye, E., C. Mirtsos, N. Suzuki, S. Suzuki, and W.C. Yeh. 2004. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. Journal of Biological Chemistry 279: 40653–40658.

    Article  PubMed  CAS  Google Scholar 

  34. Souto, F.O., J.C. Alves-Filho, W.M. Turato, M. Auxiliadora-Martins, A. Basile-Filho, and F.Q. Cunha. 2011. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. American Journal of Respiratory and Critical Care Medicine 183: 234–242.

    Article  PubMed  CAS  Google Scholar 

  35. Andrades, M., C. Ritter, M.R. de Oliveira, E.L. Streck, J.C. Fonseca Moreira, and F. Dal-Pizzol. 2011. Antioxidant treatment reverses organ failure in rat model of sepsis: role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. Journal of Surgical Research 167: e307–e313.

    Article  PubMed  CAS  Google Scholar 

  36. Iwata, A., R.A. de Claro, V.L. Morgan-Stevenson, J.C. Tupper, B.R. Schwartz, L. Liu, X. Zhu, K.C. Jordan, R.K. Winn, and J.M. Harlan. 2011. Extracellular administration of BCL2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One 6: e14729.

    Article  PubMed  CAS  Google Scholar 

  37. Hotchkiss, R.S., K.C. Chang, P.E. Swanson, K.W. Tinsley, J.J. Hui, P. Klender, S. Xanthoudakis, S. Roy, C. Black, E. Grimm, R. Aspiotis, Y. Han, D.W. Nicholson, and I.E. Karl. 2000. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nature Immunology 1: 496–501.

    Article  PubMed  CAS  Google Scholar 

  38. Hotchkiss, R.S., K.W. Tinsley, P.E. Swanson, R.E. Schmieg, J.J. Hui, K.C. Chang, D.F. Osborne, B.D. Freeman, J.P. Cobb, T.G. Buchman, and I.E. Karl. 2001. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4(+) T lymphocytes in humans. Journal of Immunology 166: 6952–6963.

    CAS  Google Scholar 

  39. Berglund, M., J.A. Thomas, E.H. Hornquist, and O.H. Hultgren. 2008. Toll-like receptor cross-hyporesponsiveness is functional in interleukin-1-receptor-associated kinase-1 (IRAK-1)-deficient macrophages: Differential role played by IRAK-1 in regulation of tumour necrosis factor and interleukin-10 production. Scandinavian Journal of Immunology 67: 473–479.

    Article  PubMed  CAS  Google Scholar 

  40. Kawagoe, T., S. Sato, K. Matsushita, H. Kato, K. Matsui, Y. Kumagai, T. Saitoh, T. Kawai, O. Takeuchi, and S. Akira. 2008. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nature Immunology 9: 684–691.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH-NIGMS grant GM084932.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Spolarics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, R., Federici, S., Bishwas, T. et al. IRAK1-Dependent Signaling Mediates Mortality in Polymicrobial Sepsis. Inflammation 36, 1503–1512 (2013). https://doi.org/10.1007/s10753-013-9692-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9692-1

KEY WORDS