Skip to main content

Advertisement

Log in

CD4+CD25+CD127low/− T Cells: A More Specific Treg Population in Human Peripheral Blood

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The quantitative identification and enrichment of viable regulatory T cells (Treg) requires reliable surface markers that are selectively expressed on Treg. Foxp3 is the accepted marker of nTreg, but it cannot be used to isolate cells for functional studies. In this study, we compared four staining profiles of Treg, including CD4+CD25high T cells, CD4+CD39+ T cells, CD4+CD73+ T cells, and CD4+CD25+CD127low/− T cells. We found that CD4+CD25+CD127low/− T cells expressed the highest level of Foxp3 and had the strongest correlation with CD4+CD25+Foxp3+ T cells, the accepted identifying characteristics for “real” nTreg cells. Moreover, functional data showed that CD4+CD25+CD127low/− T cells could effectively suppress the proliferation of CD4+CD25 T cells, suggesting that compared with the other three populations, CD4+CD25+CD127low/− T cells best fit the definition of naturally occurring regulatory T cells in human peripheral blood. Finally, we showed that CD4+CD25+CD127low/− can be used to quantitate Treg cells in individuals with systemic lupus erythematosus supporting the use of CD4+CD25+CD127low/− to identify human Treg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rouse, B.T. 2007. Regulatory T cells in health and disease. Journal of International Medocine 262: 78–95.

    Article  CAS  Google Scholar 

  2. Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.

    CAS  Google Scholar 

  3. Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, and S. Sakaguchi. 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology 10: 1969–1980.

    Article  PubMed  CAS  Google Scholar 

  4. Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4: 330–336.

    Article  PubMed  CAS  Google Scholar 

  5. Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng, Y., and A.Y. Rudensky. 2007. Foxp3 in control of the regulatory T cell lineage. Nature Immunology 8: 457–462.

    Article  PubMed  CAS  Google Scholar 

  7. Sitkovsky, M.V., and A. Ohta. 2005. The ‘danger’ sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology 26: 299–304.

    Article  PubMed  CAS  Google Scholar 

  8. Huang, S., S. Apasov, M. Koshiba, and M. Sitkovsky. 1997. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90: 1600–1610.

    PubMed  CAS  Google Scholar 

  9. Armstrong, J.M., J.F. Chen, M.A. Schwarzschild, S. Apasov, P.T. Smith, C. Caldwell, P. Chen, H. Figler, G. Sullivan, S. Fink, J. Linden, and M. Sitkovsky. 2001. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: Studies of cells from A2A-receptor-gene-deficient mice. Biochemical Journal 354: 123–130.

    Article  PubMed  CAS  Google Scholar 

  10. Borsellino, G., M. Kleinewietfeld, D. Di Mitri, A. Sternjak, A. Diamantini, R. Giometto, S. Hopner, D. Centonze, G. Bernardi, M.L. Dell'Acqua, P.M. Rossini, L. Battistini, O. Rotzschke, and K. Falk. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.

    Article  PubMed  CAS  Google Scholar 

  11. Kobie, J.J., P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, and T.R. Mosmann. 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. Journal of Immunology 177: 6780–6786.

    CAS  Google Scholar 

  12. Mizumoto, N., T. Kumamoto, S.C. Robson, J. Sevigny, H. Matsue, K. Enjyoji, and A. Takashima. 2002. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nature Medicine 8: 358–365.

    Article  PubMed  CAS  Google Scholar 

  13. Mandapathil, M., S. Lang, E. Gorelik, and T.L. Whiteside. 2009. Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. Journal of Immunological Methods 346: 55–63.

    Article  PubMed  CAS  Google Scholar 

  14. Alam, M.S., C.C. Kurtz, R.M. Rowlett, B.K. Reuter, E. Wiznerowicz, S. Das, J. Linden, S.E. Crowe, and P.B. Ernst. 2009. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. Journal of Infectious Diseases 199: 494–504.

    Article  PubMed  Google Scholar 

  15. Liu, W., A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B. Fazekas de St Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, and J.A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine 203: 1701–1711.

    Article  PubMed  CAS  Google Scholar 

  16. Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, A. Kelleher, and B. Fazekas de St Groth. 2006. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. The Journal of Experimental Medicine 203: 1693–1700.

    Article  PubMed  CAS  Google Scholar 

  17. Hartigan-O'Connor, D.J., C. Poon, E. Sinclair, and J.M. McCune. 2007. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. Journal of Immunological Methods 319: 41–52.

    Article  PubMed  Google Scholar 

  18. Miyara, M., Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, D. Nochy, P. Debre, J.C. Piette, and G. Gorochov. 2005. Global natural regulatory T cell depletion in active systemic lupus erythematosus. Journal of Immunology 175: 8392–8400.

    CAS  Google Scholar 

  19. Valencia, X., C. Yarboro, G. Illei, and P.E. Lipsky. 2007. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. Journal of Immunology 178: 2579–2588.

    CAS  Google Scholar 

  20. Barath, S., P. Soltesz, E. Kiss, M. Aleksza, M. Zeher, G. Szegedi, and S. Sipka. 2007. The severity of systemic lupus erythematosus negatively correlates with the increasing number of CD4+CD25(high)FoxP3+ regulatory T cells during repeated plasmapheresis treatments of patients. Autoimmunity 40: 521–528.

    Article  PubMed  CAS  Google Scholar 

  21. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 2005. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155: 1151–1164.

    Google Scholar 

  22. Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology 3: 135–142.

    Article  PubMed  CAS  Google Scholar 

  23. Salomon, B., and J.A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annual Review of Immunology 19: 225–252.

    Article  PubMed  CAS  Google Scholar 

  24. Kataoka, H., S. Takahashi, K. Takase, S. Yamasaki, T. Yokosuka, T. Koike, and T. Saito. 2005. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. International Immunology 17: 421–427.

    Article  PubMed  CAS  Google Scholar 

  25. Ronchetti, S., O. Zollo, S. Bruscoli, M. Agostini, R. Bianchini, G. Nocentini, E. Ayroldi, and C. Riccardi. 2004. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. European Journal of Immunology 34: 613–622.

    Article  PubMed  CAS  Google Scholar 

  26. Tang, Q., E.K. Boden, K.J. Henriksen, H. Bour-Jordan, M. Bi, and J.A. Bluestone. 2004. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. European Journal of Immunology 34: 2996–3005.

    Article  PubMed  CAS  Google Scholar 

  27. Ndhlovu, L.C., F.E. Leal, I.G. Eccles-James, A.R. Jha, M. Lanteri, P.J. Norris, J.D. Barbour, D.J. Wachter, J. Andersson, K. Tasken, E.A. Torheim, E.M. Aandahl, E.G. Kallas, and D.F. Nixon. 2010. A novel human CD4+ T-cell inducer subset with potent immunostimulatory properties. European Journal of Immunology 40: 134–141.

    Article  PubMed  CAS  Google Scholar 

  28. Klein, S., C.C. Kretz, P.H. Krammer, and A. Kuhn. 2010. CD127(low/-) and FoxP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. Journal of Investigative Dermatology 130: 492–499.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yi-ping Wang (Centre for Transplantation and Renal Research, University of Sydney at Westmead Millennium Institute) for the technical assistance and Professor Fan Pan (Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine) for the paper revision. This study was supported by a Project Grant funding from the National Ministry of Science and Technology (2008BAI59B02) and the Natural Science Grant funding from Anhui Provincial Government (090413129).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangpei Li.

Additional information

Ning Yu and Xiaomei Li contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Li, X., Song, W. et al. CD4+CD25+CD127low/− T Cells: A More Specific Treg Population in Human Peripheral Blood. Inflammation 35, 1773–1780 (2012). https://doi.org/10.1007/s10753-012-9496-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9496-8

KEY WORDS

Navigation