Skip to main content
Log in

Structural, magnetic and Mössbauer studies of Ndfexmn1-Xo3 perovskite Manganites

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The influence of Fe-doping on the structural and magnetic properties of NdFexMn1-xO3 (x = 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) nanoparticles was investigated. Auto-combustion sol-gel technique was used to synthesize the compounds. X-Ray diffraction refinement indicated that all samples were formed a single-phased orthorhombic structure with Pbnm space group. The M-T curves measurements at an applied magnetic field of 0.2 T demonstrated that all compounds undergo antiferromagnetic (AFM) to paramagnetic (PM) transition as the temperature increased in which the Nèel temperature was observed below ⁓10 K for all compounds except for NdFe0.3Mn0.7O3 compound (62 K). 57Fe transmission Mӧssbauer spectra were measured at room temperature (295 K) and liquid nitrogen temperature (78 K) for all compounds. The magnetic ordering of these compounds was highly dependent on iron content. The compounds with low iron concentration at 295 K and at 78 K were characterized by a dominant paramagnetic high-spin Fe3+ doublet. The hyperfine magnetic field distribution was responsible for the broadening of the magnetic sextet of the room temperature Mӧssbauer spectrum with x = 0.7. The 57Fe Mӧssbauer spectra with higher iron doping at both 295 K and 78 K demonstrated well resolved magnetic sextet with a hyperfine magnetic field increased linearly with increasing x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prellier, W., Singh, M.P., Murugavel, P.: J. Phys. Condens. Matter. 17, R803 (2005)

    Article  ADS  Google Scholar 

  2. Cheong, S.W., Mostovoy, M.: Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  3. Al-Yahmadi, I.Z., Gismelseed, A., Al Ma’Mari, F., Al-Rawas, A., Al-Harthi, S., Yousf, A., Widatallah, H., ElZain, M., Myint, M.T.Z.: J. Alloys Compd. 875, 159977 (2021)

    Article  Google Scholar 

  4. Zhou, Z., Guo, L., Yang, H., Liu, Q., Ye, F.: J. Alloy. Comp. 583, 21 (2014)

    Article  Google Scholar 

  5. White, R.L.: J. Appl. Phys. 40, 1061 (1969)

    Article  ADS  Google Scholar 

  6. Treves, D.: Phys. Rev. 125, 1843 (1962)

    Article  ADS  Google Scholar 

  7. Cherif, W., Ellouze, M., Lehlooh, A.F., Elhalouani, F.: J. Alloy. Compd. 543, (2012). https://doi.org/10.1016/j.jallcom.2012.06.014

  8. Pękała, M., Pękała, K., Drozd, V., Fagnard, J.-F., Vanderbemden, P.: J. Alloy. Compd. 629, 98–104 (2015)

    Article  Google Scholar 

  9. Xu, Y., Meier, M., Das, P., Koblischka, M.R., Hartmann, U.: Cryst. Eng. 5, 383–389 (2002). https://doi.org/10.1016/S1463-0184(02)00049-7

    Article  Google Scholar 

  10. Righi, L., Gorria, P., Insausti, M., Gutierrez, J., Barandiaran, J.M.: J. Appl. Phys. 81, (1997). https://doi.org/10.1063/1.364721

  11. Anjali Panchwanee , V. Raghavendra Reddy, Ajay Gupta, A. Bharathi, D.M. Phase, J. Alloy. Comp. 745(2012) 810-816

  12. Al-Yahmadi, I.Z., Gismelssed, A., Abdel-Latif, I.A., Al Ma’Mari, F., Al-Rawas, A., Al-Harthi, S., Al-Omari, I.A., Yousf, A., Widatallah, H., ElZain, M., Myint, M.T.Z.: J. Alloys Compd. 857, 157566 (2021)

    Article  Google Scholar 

  13. Koehler, W., Wollan, E.: Phys. Rev. 100, 545 (1955)

    Article  ADS  Google Scholar 

  14. Markovich, V., Jung, G., Fita, I., Mogilyansky, D., Wu, X., Wisniewski, A., Puznaik, R., Froumin, N., Titelman, L., Vradman, L., Herskowitz, H., Garodetsky, G.: J. Phys. D. Appl. Phys. 41, 185001 (2008)

    Article  ADS  Google Scholar 

  15. Al-Yahmadi, I.Z., Klencsár, Z., Gismelseed, A.M., Al Ma’Mari, F.: J. Mater Chem Phys. 267, 124619 (2021)

    Article  Google Scholar 

  16. J. Rodriguez-Carjaval, XVth cong. Int. Union of crystallography, in: Proceedings of the Satellite Meet, vol. 127, On Powder Diffraction, Toulouse, 1990

  17. Zoltán Klencsár, MossWinn 4.0i Manual, 2019. http://www.mosswinn.hu/downloads/ mosswinn.pdf

  18. Ben Jemaa, F., Mahmood, S., Ellouze, M., Hlil, E.K., Halouani, F., Bsoul, I., Awawdeh, M.: Solid State Sci. 37, 121–130 (2014)

    Article  ADS  Google Scholar 

  19. Chang, Y.L., Huang, Q., Ong, C.K.: J. Appl. Phys. 91, 789–793 (2002)

    Article  ADS  Google Scholar 

  20. Guti’errez, J., Peña, A., Barandiar’an, J.M., Hern’andez, T., Pizarro, J.L., Lezama, L., Insausti, M., Rojo, T.: Phys. Rev. B. 61, 9028–9035 (2000)

    Article  ADS  Google Scholar 

  21. Hern’andez, T., Plazaola, F., Rojo, T., Barandiar’an, J.M.: J. Alloys Compd. 323–324, 440–443 (2001)

    Article  Google Scholar 

  22. Mahmood, S.H., Dawood, J., Lehlooh, A.-F., Cheikhrouhou, A., Ammar, A.: Hyperfine Interact. 196, 385–394 (2010)

    Article  ADS  Google Scholar 

  23. Goldanskii, V., Makarov, E., Khrapov, V.: Phys. Lett. 3, 344–346 (1963)

    Article  ADS  Google Scholar 

  24. Gonser, U., Pfannes, H.: J. Physique. 35(Suppl. 12), C6-113-117 (1974)

    Google Scholar 

  25. T. Ericsson, R. Wgppling: J. Physique 37 (Suppl. 12) C6-719 723 (1976)

  26. Blume, M.: Phys. Rev. Lett. 14, 96–98 (1965)

    Article  ADS  Google Scholar 

  27. Hesse, J., Rübartsch, A.: J. Phys. E Sci. Instrum. 7, 526–532 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the central analytical and applied research unit (CAARU) for performing XRD measurements.

Notations

RA relative Mössbauer subspectrum area.

δ 57Fe Mössbauer isomer shift with respect to that of α-Fe at room temperature.

Δ 57Fe quadrupole splitting.

ε 57Fe first-order quadrupole shift.

B hf 57Fe hyperfine magnetic field.

Bhf〉 mean value of the 57Fe hyperfine magnetic field in the case of a hyperfine magnetic field distribution.

FWHM full width at half maximum.

W L Lorentzian FWHM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Z. Al-Yahmadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Yahmadi, I.Z., Gismelseed, A.M., Albzour, F. et al. Structural, magnetic and Mössbauer studies of Ndfexmn1-Xo3 perovskite Manganites. Hyperfine Interact 242, 41 (2021). https://doi.org/10.1007/s10751-021-01777-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01777-9

Keywords

Navigation