Skip to main content
Log in

Interference of several gravitational quantum states of antihydrogen in GBAR experiment

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

This analysis is based on a close analogy between two seemingly different experiments: on the gravitational properties of antihydrogen atoms in GBAR and on the neutron whispering gallery. They are described with high accuracy by the similar formalism. Even their parameters match each other quite well. We propose to apply the interferometric method used in the experiment on the neutron whispering gallery to the study of the free fall acceleration of antihydrogen atoms and estimate the accuracy that can be achieved. The proposed method simultaneously reduces statistical uncertainty due to observation of several gravitational quantum states, reduces systematic uncertainty due to the absence of perturbations associated with the excitation of resonant transitions, and can easily be implemented in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kellerbauer, A., et al.: Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instr. Meth. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  2. Charman, A.E., et al.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nature Commun. 4, 1785 (2013)

    Article  ADS  Google Scholar 

  3. Indelicato, P., et al.: The GBAR project, or how does antimatter fall?. Hyperf. Int. 228, 141 (2014)

    Article  ADS  Google Scholar 

  4. Pérez, P., et al.: The GBAR antimatter gravity experiment. Hyperf. Int. 233, 21 (2015)

    Article  ADS  Google Scholar 

  5. Voronin, A.Yu., et al.: Interaction of ultracold antihydrogen with a conducting wall. Phys. Rev. A 72, 062903 (2005)

    Article  ADS  Google Scholar 

  6. Voronin, A.Yu., et al.: Quantum reflection of ultracold antihydrogen from a solid surface. J. Phys. B 38, L301 (2005)

    Article  Google Scholar 

  7. Voronin, A.Yu., et al.: Gravitational quantum states of antihydrogen. Phys. Rev. A 83, 032903 (2011)

    Article  ADS  Google Scholar 

  8. Dufour, G., et al.: Quantum reflection of antihydrogen from nanoporous media. Phys. Rev. A 87, 22506 (2013)

    Article  ADS  Google Scholar 

  9. Dufour, G., et al.: Quantum reflection of antihydrogen from the Casimir potential above matter slabs. Phys. Rev. A 87, 012901 (2013)

    Article  ADS  Google Scholar 

  10. Dufour, G., et al.: Shaping the distribution of vertical velocities of antihydrogen in GBAR. Europ. Phys. J. C 74, 2731 (2014)

    Article  ADS  Google Scholar 

  11. Voronin, A.Yu., et al.: Resonance spectroscopy of gravitational states of antihydrogen. Hyperfine Int. 228, 133 (2014)

    Article  ADS  Google Scholar 

  12. Dufour, G., et al.: Quantum reflection and Liouville transformations from wells to walls. Europhys. Lett. 110, 30007 (2015)

    Article  ADS  Google Scholar 

  13. Voronin, A.Yu., et al.: Quantum ballistic experiment on antihydrogen. J. Phys. B: At. Mol. Opt. Phys. 49, 054001 (2016)

    Article  ADS  Google Scholar 

  14. Voronin, A.Yu., et al.: Quenching of antihydrogen gravitational states by surface charges. J. Phys. B: At. Mol. Opt. Phys. 49, 205003 (2016)

    Article  ADS  Google Scholar 

  15. Crepin, P.-P., et al.: Quantum reflection of antihydrogen from a liquid helium film. Europ. Phys. Lett. 119, 33001 (2017)

    Article  ADS  Google Scholar 

  16. Nesvizhevsky, V.V., et al.: Search for quantum states of the neutron in a gravitational field: gravitational levels. Nucl. Instr. Meth. A 440, 754 (2000)

    Article  ADS  Google Scholar 

  17. Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002)

    Article  ADS  Google Scholar 

  18. Nesvizhevsky, V.V., et al.: Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 67, 102002 (2003)

    Article  ADS  Google Scholar 

  19. Nesvizhevsky, V.V., et al.: Study of the neutron quantum states in the gravity field. Eur. Phys. J. C 40, 479 (2005)

    Article  ADS  Google Scholar 

  20. Voronin, A., et al.: Quantum motion of a neutron in a waveguide in the gravitational field. Phys. Rev. D 73, 044029 (2006)

    Article  ADS  Google Scholar 

  21. Adhikari, R., et al.: Quantum size effect and biased diffusion of gravitationally bound neutrons in a rough guide. Phys. Rev. A 75, 063613 (2007)

    Article  ADS  Google Scholar 

  22. Kreuz, M., et al.: A method to measure the resonance transitions between the gravitationally bound quantum states of neutrons in the GRANIT spectrometer. Nucl. Instr. Meth A 611, 326 (2009)

    Article  ADS  Google Scholar 

  23. Jenke, T., et al.: Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 7, 468 (2011)

    Article  Google Scholar 

  24. Jenke, T., et al.: Gravity resonance spectroscopy constrains dark energy and dark matter scenarios. Phys. Rev. Lett. 112, 151105 (2014)

    Article  ADS  Google Scholar 

  25. Ichikawa, G., et al.: Observation of the spatial distribution of gravitationally bound quantum states of ultracold neutrons and its derivation using the Wigner function. Phys. Rev. Lett. 112, 0711101 (2014)

    Article  Google Scholar 

  26. Pignol, G., et al.: Gravitational resonance spectroscopy with an oscillating magnetic field in the GRANIT flow through arrangement. Adv. High En. Phys. 2014, 628125 (2014)

    Google Scholar 

  27. Baessler, S., et al.: Frequency shifts in resonance gravitational spectroscopy. Phys. Rev. D 91, 042006 (2015)

    Article  ADS  Google Scholar 

  28. Baessler, S., et al.: Publisher’s note: Frequency shifts in resonance gravitational spectroscopy. Phys. Rev. D 91, 069906 (2015)

    Article  ADS  Google Scholar 

  29. Nesvizhevsky, V.V., et al.: Centrifugal quantum states of neutrons. Phys. Rev. A 78, 033616 (2008)

    Article  ADS  Google Scholar 

  30. Nesvizhevsky, V.V., et al.: Neutron whispering gallery. Nature Phys. 6, 114 (2010)

    Article  ADS  Google Scholar 

  31. Nesvizhevsky, V.V., et al.: The whispering gallery effect in neutron scattering. New J. Phys. 12, 1367 (2010)

    Article  Google Scholar 

  32. Nesvizhevsky, V.V., et al.: Centrifugal quantum states of neutrons. Compt. Rend. Phys. 12, 791 (2011)

    Article  ADS  Google Scholar 

  33. Voronin, A.Yu., et al.: Whispering-gallery states of antihydrogen near a curved surface. Phys. Rev. A 85, 014902 (2012)

    Article  ADS  Google Scholar 

  34. Baessler, S., et al.: Constrain on the coupling of axionlike particles to matter via an ultracold neutron gravitational experiment. Phys. Rev. D 75, 075006 (2007)

    Article  ADS  Google Scholar 

  35. Antoniadis, I., et al.: Short-range fundamental forces. Compt. Rend. Phys. 12, 755 (2011)

    Article  ADS  Google Scholar 

  36. Abramowitz, M., Stegun, I. A. (eds.): Handbook of Mathematical Functions, 10th edn. Dover, New York (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nesvizhevsky.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 13th International Conference on Low Energy Antiproton Physics (LEAP 2018) Paris, France, 12-16 March 2018

Edited by Paul Indelicato, Dirk van der Werf and Yves Sacquin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesvizhevsky, V.V., Voronin, A.Y., Crépin, PP. et al. Interference of several gravitational quantum states of antihydrogen in GBAR experiment. Hyperfine Interact 240, 32 (2019). https://doi.org/10.1007/s10751-019-1570-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1570-2

Keywords

Navigation