Skip to main content
Log in

ALPHA: antihydrogen and fundamental physics

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Detailed comparisons of antihydrogen with hydrogen promise to be a fruitful test bed of fundamental symmetries such as the CPT theorem for quantum field theory or studies of gravitational influence on antimatter. With a string of recent successes, starting with the first trapped antihydrogen and recently resulting in the first measurement of a quantum transition in anti-hydrogen, the ALPHA collaboration is well on its way to perform such precision comparisons. We will discuss the key innovative steps that have made these results possible and in particular focus on the detailed work on positron and antiproton preparation to achieve antihydrogen cold enough to trap as well as the unique features of the ALPHA apparatus that has allowed the first quantum transitions in anti-hydrogen to be measured with only a single trapped antihydrogen atom per experiment. We will also look at how ALPHA plans to step from here towards more precise comparisons of matter and antimatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Madsen, N.: Cold antihydrogen: a new frontier in fundamental physics. Phil. Trans. Roy. Soc. A. 368, 3671–3682 (2010)

    Article  ADS  Google Scholar 

  2. Shore, G.M.: Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry . Nucl. Phys. B 717, 86–118 (2005)

    Article  ADS  Google Scholar 

  3. Maury, S.: The antiproton decelerator: AD. Hyp. Int. 109, 43–52 (1997)

    Article  ADS  Google Scholar 

  4. Amoretti, M., et al.: (ATHENA), production and detection of cold antihydrogen atoms. Nature 419, 456–459 (2002)

    Article  ADS  Google Scholar 

  5. Andresen, G.B., et al.: (ALPHA), trapped antihydrogen. Nature 468, 673–676 (2010)

    Article  ADS  Google Scholar 

  6. Andresen, G.B., et al.: (ALPHA), confinement of antihydrogen for 1,000 seconds. Nat. Phys. 7, 558–564 (2011)

    Article  Google Scholar 

  7. Amole, C., et al.: (ALPHA), resonant quantum transitions in trapped antihydrogen atoms. Nature 483, 439–443 (2012)

    Article  ADS  Google Scholar 

  8. ALPHA Collab, Charman, A.E.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Comm. 4, 1785 (2013)

    Article  Google Scholar 

  9. Madsen, N., et al.: (ATHENA), spatial distribution of cold antihydrogen formation. Phys. Rev. Lett. 033403, 94 (2005)

    Google Scholar 

  10. Andresen, G.B., et al.: (ALPHA), compression of antiproton clouds for antihydrogen trapping. Phys. Rev. Lett. 100, 203401 (2008)

    Article  ADS  Google Scholar 

  11. Eggleston, D.L., et al.: Parallel energy analyzer for pure electron plasma devices. Phys. Fluids. B. 4, 3432–3439 (1992)

    Article  ADS  Google Scholar 

  12. Andresen, G.B., et al.: (ALPHA), antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. Rev. Sci. Inst. 80, 123701 (2009)

    Article  ADS  Google Scholar 

  13. Andresen, G.B., et al.: (ALPHA), evaporative cooling of antiprotons to cryogenic temperatures. Phys. Rev. Lett. 105, 013003 (2010)

    Article  ADS  Google Scholar 

  14. Fajans, J., et al.: Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping

  15. Fajans, J., Madsen, N., Robicheaux, F.: Critical loss radius in a Penning trap subject to multipole fields. Phys. Plas. 15, 032108 (2008)

    Article  ADS  Google Scholar 

  16. Andresen, G.B., et al.: (ALPHA), autoresonant excitation of antiproton plasmas. Phys. Rev. Lett. 106, 025002 (2011)

    Article  ADS  Google Scholar 

  17. Amole, C., et al.: (ALPHA), experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production. Phys. Plas. 20, 043510 (2011)

    Article  ADS  Google Scholar 

  18. Bertsche, W., et al.: (ALPHA), a magnetic trap for antihydrogen confinement. Nucl. Inst. Meth. A. 566, 746–756 (2006)

    Article  ADS  Google Scholar 

  19. Andresen, G.B., et al.: (ALPHA), antihydrogen annihilation reconstruction with the ALPHA silicon detector. Nucl. Inst. Meth. A 684, 73–81 (2012)

    Article  ADS  Google Scholar 

  20. Andresen, G.B., et al.: (ALPHA), search for trapped antihydrogen. Phys. Lett. B 695, 95–104 (2011)

    Article  ADS  Google Scholar 

  21. Andresen, G.B., et al.: (ALPHA), discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap. New. J. Phys. 14, 015010 (2012)

    Article  ADS  Google Scholar 

  22. Oelert, W., Eriksson, T., Belochitskii, P., Tranquille, G.: AD performance and its extension towards ELENA. Hyp. Int. 213, 227–236 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Niels Madsen.

Additional information

Proceedings of the 11th International Conference on Low Energy Antiproton Physics (LEAP 2013) held in Uppsala, Sweden, 10-15 June, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, N., for the ALPHA collaboration. ALPHA: antihydrogen and fundamental physics. Hyperfine Interact 228, 37–45 (2014). https://doi.org/10.1007/s10751-014-1031-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1031-x

Keywords

Navigation