Skip to main content

Advertisement

Log in

Lake trophic status and hydrological connectivity modify mechanisms underlying mollusc assemblage structuring

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Species distribution and assemblage structuring are influenced by a combination of species dispersal mode and the dispersal routes used. Habitat connectivity is particularly important for passively dispersing taxa such as freshwater molluscs. In addition, current anthropogenic eutrophication affects the structure of assemblages by reducing native fauna and promoting the spread of generalist species. Here, we examined mollusc assemblages in two systems of small lakes differing in hydrological connectivity. The assemblages of 22 isolated lakes in Albania were mainly controlled by the distance between the lakes with a lower contribution of environmental conditions and lake area. In contrast, assemblages of 52 interconnected lakes in Czechia were driven primarily by environmental conditions. However, as lake trophic status increased, the assemblages in Czechia became more homogeneous in species composition as high trophic status filtered out all species except generalists. These assemblages from 33 eutrophic lakes were strongly determined by environmental variables, whereas the remaining assemblages from 19 low trophic lakes were structured by a combination of spatial and environmental variables. We conclude that hydrological connectivity between lakes is crucial for the distribution of molluscs, but eutrophication may influence the importance of individual mechanisms structuring mollusc assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available on request from the corresponding author.

References

  • Abell, J. M., D. Özkundakci, D. P. Hamilton & P. Reeves, 2022. Restoring shallow lakes impaired by eutrophication: Approaches, outcomes, and challenges. Critical Reviews in Environmental Science and Technology Taylor & Francis 52: 1199–1246. https://doi.org/10.1080/10643389.2020.1854564.

    Article  Google Scholar 

  • Aho, J., 1978. Freshwater snail populations and the equilibrium theory of island biogeography. II. Relative importance of chemical and spatial variables. Annales Zoologici Fennici Finnish Zoological and Botanical Publishing Board 15: 155–164. https://www.jstor.org/stable/23733654.

  • Baguette, M., S. Blanchet, D. Legrand, V. M. Stevens & C. Turlure, 2013. Individual dispersal, landscape connectivity and ecological networks. Biological Reviews 88: 310–326. https://doi.org/10.1111/brv.12000].

  • Bauman, D., T. Drouet, M.-J. Fortin & S. Dray, 2018. Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99: 2159–2166. https://doi.org/10.1002/ecy.2469.

    Article  Google Scholar 

  • Bechmann, M. E., D. Berge, H. O. Eggestad & S. M. Vandsemb, 2005. Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes—two long-term integrated studies from Norway. Journal of Hydrology 304: 238–250. https://doi.org/10.1016/j.jhydrol.2004.07.032.

    Article  CAS  Google Scholar 

  • Beran, L. & M. Horsák, 1998. Aquatic molluscs (Gastropoda, Bivalvia) of the Dolnomoravský úval lowland Czech Republic. Acta Societatis Zoologicae Bohemicae 62: 7–23.

    Google Scholar 

  • Birk, S., D. Chapman, L. Carvalho, B. M. Spears, H. E. Andersen, C. Argillier, S. Auer, A. Baattrup-Pedersen, L. Banin, M. Beklioğlu, E. Bondar-Kunze, A. Borja, P. Branco, T. Bucak, A. D. Buijse, A. C. Cardoso, R.-M. Couture, F. Cremona, D. de Zwart, C. K. Feld, M. T. Ferreira, H. Feuchtmayr, M. O. Gessner, A. Gieswein, L. Globevnik, D. Graeber, W. Graf, C. Gutiérrez-Cánovas, J. Hanganu, U. Işkın, M. Järvinen, E. Jeppesen, N. Kotamäki, M. Kuijper, J. U. Lemm, S. Lu, A. L. Solheim, U. Mischke, S. J. Moe, P. Nõges, T. Nõges, S. J. Ormerod, Y. Panagopoulos, G. Phillips, L. Posthuma, S. Pouso, C. Prudhomme, K. Rankinen, J. J. Rasmussen, J. Richardson, A. Sagouis, J. M. Santos, R. B. Schäfer, R. Schinegger, S. Schmutz, S. C. Schneider, L. Schülting, P. Segurado, K. Stefanidis, B. Sures, S. J. Thackeray, J. Turunen, M. C. Uyarra, M. Venohr, P. C. von der Ohe, N. Willby & D. Hering, 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology & Evolution 4: 1060–1068. https://doi.org/10.1038/s41559-020-1216-4.

    Article  Google Scholar 

  • Böhm, M., N. I. Dewhurst-Richman, M. Seddon, S. E. H. Ledger, C. Albrecht, D. Allen, A. E. Bogan, J. Cordeiro, K. S. Cummings, A. Cuttelod, G. Darrigran, W. Darwall, Z. Fehér, C. Gibson, D. L. Graf, F. Köhler, M. Lopes-Lima, G. Pastorino, K. E. Perez, K. Smith, D. van Damme, M. V. Vinarski, T. von Proschwitz, T. von Rintelen, D. C. Aldridge, N. A. Aravind, P. B. Budha, C. Clavijo, D. Van Tu, O. Gargominy, M. Ghamizi, M. Haase, C. Hilton-Taylor, P. D. Johnson, Ü. Kebapçı, J. Lajtner, C. N. Lange, D. A. W. Lepitzki, A. Martínez-Ortí, E. A. Moorkens, E. Neubert, C. M. Pollock, V. Prié, C. Radea, R. Ramirez, M. A. Ramos, S. B. Santos, R. Slapnik, M. O. Son, A.-S. Stensgaard & B. Collen, 2021. The conservation status of the world’s freshwater molluscs. Hydrobiologia 848: 3231–3254. https://doi.org/10.1007/s10750-020-04385-w.

    Article  Google Scholar 

  • Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796. https://doi.org/10.1046/j.1461-0248.2003.00486.x.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055. https://doi.org/10.2307/1940179.

    Article  Google Scholar 

  • Brönmark, C., 1985. Freshwater snail diversity: effects of pond area, habitat heterogeneity and isolation. Oecologia 67: 127–131. https://doi.org/10.1007/BF00378463.

    Article  Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2002. Environmental issues in lakes and ponds: current state and perspectives. Environmental Conservation 29: 290–307. https://doi.org/10.1017/S0376892902000218.

    Article  CAS  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104: 17430–17434. https://doi.org/10.1073/pnas.0704350104.

    Article  Google Scholar 

  • Coetzee, J. A., S. D. F. Langa, S. N. Motitsoe & M. P. Hill, 2020. Biological control of water lettuce, Pistia stratiotes L., facilitates macroinvertebrate biodiversity recovery: a mesocosm study. Hydrobiologia 847: 3917–3929. https://doi.org/10.1007/s10750-020-04369-w.

    Article  CAS  Google Scholar 

  • Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield & P. J. Williams, 1995. Temporary and permanent ponds: An assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–133. https://doi.org/10.1016/0006-3207(95)00021-U.

    Article  Google Scholar 

  • De Meester, L., S. Declerck, R. Stoks, G. Louette, F. Van De Meutter, T. De Bie, E. Michels & L. Brendonck, 2005. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 715–725. https://doi.org/10.1002/aqc.748.

    Article  Google Scholar 

  • Dhora, D., 2014. Molluscs of Albania 2014: List of species and biogeographical data Universiteti i Shkodrës “Luigj Gurakuqi”. Fakulteti i Shkencave të Natyrës 64: 149–181. [available on internet at https://universitybiography.files.wordpress.com/2014/04/molluscs-of-albania.pdf].

  • Dillon, R. T., 2000. The ecology of freshwater molluscs. Cambridge University Press. New York, USA.

    Book  Google Scholar 

  • Donohue, I., A. L. Jackson, M. T. Pusch & K. Irvine, 2009. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology 90: 3470–3477. https://doi.org/10.1890/09-0415.1].

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.015.

    Article  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 2019. adespatial: Multivariate Multiscale Spatial Analysis. R package version 4.1.1. [available on internet at https://github.com/sdray/adespatial].

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. [available on internet athttps://doi.org/10.1017/S1464793105006950].

  • Eftimi, R. & H. Zojer, 2015. Human impacts on Karst aquifers of Albania. Environmental Earth Sciences 74: 57–70. https://doi.org/10.1007/s12665-015-4309-7.

    Article  Google Scholar 

  • ESRI, 2017. ArcGIS 10.6. Environmental Systems Research Institute. Redlands.

  • Fernández-Aláez, M., F. García-Criado, J. García-Girón, F. Santiago & C. Fernández-Aláez, 2020. Environmental heterogeneity drives macrophyte beta diversity patterns in permanent and temporary ponds in an agricultural landscape. Aquatic Sciences 82: 1–12. https://doi.org/10.1007/s00027-020-0694-4.

    Article  Google Scholar 

  • Giorgi, F. & P. Lionello, 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005.

    Article  Google Scholar 

  • Glöer, P., C. Meier-Brook & O. Ostermann, 2003. Süßwassermollusken. Deutscher Jugendbund für Naturbeobachtung. Hamburg, Germany.

  • Harrell Jr, F. E. & C. Dupont, 2018. Hmisc: Harrell Miscellaneous. R package version 4.1–1. [available on internet at https://CRAN.R-project.org/web/packages/Hmisc].

  • Heino, J., 2013. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980. https://doi.org/10.1007/s00442-012-2451-4.

    Article  Google Scholar 

  • Heino, J. & T. Muotka, 2006. Landscape position, local environmental factors, and the structure of molluscan assemblages of lakes. Landscape Ecology 21: 499–507. https://doi.org/10.1007/s10980-005-2377-x.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869. https://doi.org/10.1111/fwb.12533.

    Article  Google Scholar 

  • Horsák, M., L. Juřičková & J. Picka, 2013. Molluscs of the Czech and Slovak Republics. Kabourek. Zlín, Czech Republic.

    Google Scholar 

  • Hrnčiarová, T., 2009. Atlas krajiny České republiky (Landscape atlas of the Czech Republic). Ministerstvo Životního Prostředí České republiky. Prague, Czech Republic.

    Google Scholar 

  • Hubbell, S. P., 2001. A Unified Theory of Biodiversity and Biogeography. Princeton University Press. Princeton, USA.

    Google Scholar 

  • Hulsmans, A., K. Moreau, L. D. Meester, B. J. Riddoch & L. Brendonck, 2007. Direct and indirect measures of dispersal in the fairy shrimp Branchipodopsis wolfi indicate a small scale isolation-by-distance pattern. Limnology and Oceanography 52: 676–684. https://doi.org/10.4319/lo.2007.52.2.0676.

    Article  Google Scholar 

  • Hyseni, C., J. Heino, L. M. Bini, U. Bjelke & F. Johansson, 2021. The importance of blue and green landscape connectivity for biodiversity in urban ponds. Basic and Applied Ecology 57: 129–145. https://doi.org/10.1016/j.baae.2021.10.004.

    Article  Google Scholar 

  • Larsson, J., A. J. R. Godfrey, P. Gustafsson, D. Eberly, E. Huber & F. Privé, 2020. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 4.1.1. [available on internet at https://CRAN.R-project.org/package=eulerr].

  • Lassen, H. H., 1975. The diversity of freshwater snails in view of the equilibrium theory of island biogeography. Oecologia Springer 19: 1–8. [available on internet at https://www.jstor.org/stable/4215090].

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x.

    Article  Google Scholar 

  • Lorencová, E. & M. Horsák, 2019. Environmental drivers of mollusc assemblage diversity in a system of lowland lentic habitats. Hydrobiologia 836: 49–64. https://doi.org/10.1007/s10750-019-3940-9.

    Article  Google Scholar 

  • Lorencová, E., J. Bojková, E. Maršálková & M. Horsák, 2021. Littoral vegetation predicts mollusc distribution in a network of unconnected small karstic lakes in the Mediterranean zone of Albania. International Review of Hydrobiology 106: 121–130. https://doi.org/10.1002/iroh.201902035.

    Article  Google Scholar 

  • Lougheed, V. L., M. D. Mcintosh, C. A. Parker & R. J. Stevenson, 2008. Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshwater Biology 53: 2402–2413. https://doi.org/10.1111/j.1365-2427.2007.01920.x.

    Article  Google Scholar 

  • Meerhoff, M. & M. de los Ángeles González-Sagrario, 2021. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia. https://doi.org/10.1007/s10750-021-04771-y.

    Article  Google Scholar 

  • Naimi, B., 2017. usdm: Uncertainty analysis for species distribution models. [available on internet at https://cran.r-project.org/web/packages/usdm/usdm.pdf].

  • Nilsson, S. G. & I. N. Nilsson, 1978. Breeding bird community densities and species richness in lakes. Oikos 31: 214–221. https://doi.org/10.2307/3543565.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2018. Vegan: Community ecology package. R package version 2.5–1. [available on internet at https://CRAN.R-project.org/package=vegan].

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262. https://doi.org/10.1890/08-0851.1.

    Article  Google Scholar 

  • Parise, M., P. Qiriazi & S. Sala, 2004. Natural and anthropogenic hazards in karst areas of Albania. Natural Hazards and Earth System Science 4: 569–581. https://doi.org/10.5194/nhess-4-569-2004.

    Article  Google Scholar 

  • Parise, M., P. Qiriazi & S. Sala, 2008. Evaporite karst of Albania: main features and cases of environmental degradation. Environmental Geology 53: 967–974. https://doi.org/10.1007/s00254-007-0722-x.

    Article  CAS  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

    Article  Google Scholar 

  • Perova, S. N., 2008. The taxonomic composition of macrozoobenthos in central Russian small karst lakes. Inland Water Biology 1: 371–379. https://doi.org/10.1134/S1995082908040093.

    Article  Google Scholar 

  • Petsch, D. K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology 101: 113–122. https://doi.org/10.1002/iroh.201601850.

    Article  Google Scholar 

  • Qiriazi, P., 2001. Gjeografia fizike e Shqipërisë. Afërdita. Tirana, Albania.

  • Qiriazi, P. & F. Bego, 1999. Monumentet e natyrës së Shqipërisë. Në Shtypshkronjën ILAR. Tirana, Albania.

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59: 2256–2267. https://doi.org/10.1111/fwb.12428].

  • Rahel, F. J., 2007. Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology 52: 696–710. https://doi.org/10.1111/j.1365-2427.2006.01708.x.

    Article  Google Scholar 

  • Salgado, J., C. D. Sayer, S. J. Brooks, T. A. Davidson, B. Goldsmith, I. R. Patmore, A. G. Baker & B. Okamura, 2018. Eutrophication homogenizes shallow lake macrophyte assemblages over space and time. Ecosphere 9: e02406. https://doi.org/10.1002/ecs2.2406

  • Savard, J.-P.L., W. Sean Boyd & G. E. John Smith, 1994. Waterfowl-wetland relationships in the Aspen Parkland of British Columbia: comparison of analytical methods. Hydrobiologia 279: 309–325. https://doi.org/10.1007/BF00027864.

    Article  Google Scholar 

  • Siqueira, T., L. M. Bini, F. O. Roque, S. R. Marques Couceiro, S. Trivinho-Strixino & K. Cottenie, 2012. Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35: 183–192. https://doi.org/10.1111/j.1600-0587.2011.06875.x.

    Article  Google Scholar 

  • Stendera, S. E. S. & R. K. Johnson, 2005. Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology 50: 1360–1375. https://doi.org/10.1111/j.1365-2427.2005.01403.x.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577. https://doi.org/10.1111/j.0906-7590.2008.05442.x.

    Article  Google Scholar 

  • Verberk, W. C. E. P., G. V. D. Velde & H. Esselink, 2010. Explaining abundance–occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. Journal of Animal Ecology 79: 589–601. https://doi.org/10.1111/j.1365-2656.2010.01660.x.

    Article  Google Scholar 

  • Vollenweider, R. A., 1968. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Organisation for Economic Cooperation and Development. Paris, France.

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363. https://doi.org/10.1146/annurev.ecolsys.27.1.337.

    Article  Google Scholar 

  • Welter-Schultes, F. W., 2012. European Non-Marine Molluscs, a Guide for Species Identification: Bestimmungsbuch für europäische Land-und Süsswassermollusken. Planet Poster Editions. Göttingen, Germany.

  • Zealand, A. M. & M. J. Jeffries, 2009. The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK. Hydrobiologia 632: 177–187. https://doi.org/10.1007/s10750-009-9837-2.

    Article  Google Scholar 

  • Zhang, Z., J. Gao & Y. Cai, 2019. The effects of environmental factors and geographic distance on species turnover in an agriculturally dominated river network. Environmental Monitoring and Assessment 191: 1–17. https://doi.org/10.1007/s10661-019-7904-3.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Mikaela Mahilaj from Albanian Society for Protection of Birds & Mammals, and Sajmir Bequiraj and Xhoia Mujali from the University of Tirana for supporting the fieldwork in Albania and providing facilities at the university. Our thanks go to Petr Dvořák, Jana Petruželová, Libor Bláha, Vojtěch Kaska, Klára Dojczarová, Nicole Schicková, Jan Balák and Klára Němečková for their help in the field in Czechia. We are also thankful to Martina Poláková for the help with spatial statistics.

Funding

This research was supported by the Czech Science Foundation (GA20-17305S).

Author information

Authors and Affiliations

Authors

Contributions

EŠ and MH: conceived and designed the study. EŠ, JB, JS and EM: developed methodology. EŠ: conducted fieldwork and performed statistical analyses. EŠ and EM: prepared the data. EŠ and MH: wrote the manuscript; all other authors provided editorial advice. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Erika Šlachtová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling editor: Luis Mauricio Bini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4343 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šlachtová, E., Bojková, J., Maršálková, E. et al. Lake trophic status and hydrological connectivity modify mechanisms underlying mollusc assemblage structuring. Hydrobiologia 850, 793–806 (2023). https://doi.org/10.1007/s10750-022-05125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05125-y

Keywords

Navigation