Skip to main content
Log in

Structural parameters of biofilm and bacterioplankton are better indicators of urbanization than photosynthetic functional parameters in low-order streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to assess urbanization effects on microbial communities from low-order streams. Artificial substrata were placed upstream (control) and downstream (urban) of the cities of the selected streams. Photosynthetic parameters derived from chlorophyll-a fluorescence were measured using a Pulse of Amplitude Modulated Fluorometer, and the bacterial biofilm and bacterioplankton were counted by microscopy after staining with 4′,6-diamidino-2-phenylindole. We found higher bacterial biofilm biomass together with higher concentration of nutrients in urban reaches. The biofilm total density of bacteria was negatively correlated with the humic acid concentration, while the bacterioplankton total density was positively correlated with soluble reactive phosphorus and nitrite concentration. Autotrophic Index reflected the predominance of heterotrophs in the three streams. The concentration of chlorophyll-a, the minimum fluorescence, and the other photosynthetic parameters showed variations between the streams. These would respond to environmental factors at local scale not included in this study and may be influenced by the low development of autotrophic biomass at least in two of the streams studied. The bacterial morphotypes Small rod, Large rod, and Vibrio shaped (large) allowed the differentiation of urban reaches and would be useful as indicators of urbanization effects in both biofilm and bacterioplankton of lowland streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainstein, L., 2012. Urbanización, medio ambiente y sustentabilidad en Argentina. Cuaderno Urbano Resistencia 12(12): 173–189.

    Article  Google Scholar 

  • Aloi, J. E., 1990. A critical review of recent freshwater periphyton field methods. Canadian Journal Fisheries Aquatic Science 47: 656–670.

    Article  Google Scholar 

  • Aminot, A., 1983. Dosage de la chlorophylleet des phéopigment par spectrophotométric. Pp. 177–189 pp en A. Aminot and M. Chansspied, (eds) Manual des analyses chimiques en Milienmarin Centre National pour L´Explotation des Océans, Brest, Francia.

  • Amuchástegui, G., L. di Franco & C. Feijoó, 2016. Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia 767: 65–79.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the examination of water and waste water. A. Eaton, L. Clesceri, E. Rice, & A. Greenberg, (eds) American Public Health Association.

  • Basílico, G., L. de Cabo & A. Faggi, 2013. Impacts of composite wastewater on a Pampean stream (Argentina) and phytoremediation alternative with Spirodela intermedia Koch (Lemnaceae) growing in batch reactors. Journal of Environmental Management 115: 53–59.

    Article  Google Scholar 

  • Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani & A. I. Packmann, 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14(4): 251.

    Article  CAS  Google Scholar 

  • Bauer, D. E., M. E. Conde & N. Gómez, 2002. Phytoplankton of a small lowland stream related to water quality and hydraulic discontinuities. Archiv Fur Hydrobiologie 153(3): 421–442.

    Article  CAS  Google Scholar 

  • Berggren, M., H. Laudon, M. Haei, L. Ström & M. Jansson, 2010. Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. The ISME Journal 4(3): 408–416.

    Article  CAS  Google Scholar 

  • Besemer, K., 2016. Microbial biodiversity in natural biofilms. In en Romaní, A., H. Guasch & M. Balaguer (eds), Aquatic Biofilms. Ecology, Water Quality and Wastewater Treatment Caister Academic Press, Norfolk, UK: 63–87.

    Google Scholar 

  • Biggs, B. J., 1989. Biomonitoring of organic pollution using periphyton, South Branch, Canterbury, New Zealand. New Zealand Journal of Marine and Freshwater Research 23(2): 263–274.

    Article  CAS  Google Scholar 

  • Bilger, W., U. Schreiber & M. Bock, 1995. Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102(4): 425–432.

    Article  Google Scholar 

  • Burns, A. & D. S. Ryder, 2001. Potential for biofilms as biological indicators in Australian riverine systems. Ecological Management & Restoration 2(1): 53–64.

    Article  Google Scholar 

  • Camargo, J. A. & A. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International 32(6): 831–849.

    Article  CAS  Google Scholar 

  • Carr, G. M., A. Morin & P. A. Chambers, 2005. Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biology 50(8): 1337–1350.

    Article  Google Scholar 

  • Catford, J. A., C. J. Walsh & J. Beardall, 2007. Catchment urbanization increases benthic microalgal biomass in streams under controlled light conditions. Aquatic Sciences 69(4): 511–522.

    Article  CAS  Google Scholar 

  • Cochero, J., A. M. Romaní & N. Gómez, 2013. Delayed response of microbial epipelic biofilm to nutrient addition in a Pampean stream. Aquatic Microbial Ecology 69(2): 145–155.

    Article  Google Scholar 

  • Cochero, J., M. M. Nicolosi Gelis, M. B. Sathicq & N. Gomez, 2018. Biofilm early stage development in two nutrient-rich streams with different urban impacts. River Research and Applications 34(7): 755–764.

    Article  Google Scholar 

  • Cochero, J., Gelis, M. M. N., Donadelli, J., & Gomez, N. ,2021. Translocation of Epipelic Biofilms and Their Short-Term Responses to Urbanization Impacts in Nutrient Rich Streams. Anais da Academia Brasileira de Ciências93.

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series. Oldendorf 43(1): 1–10.

    Article  Google Scholar 

  • Cole, J. J., M. L. Pace, N. F. Caraco & G. S. Steinhart, 1993. Bacterial biomass and cell size distributions in lakes: more and larger cells in anoxic waters. Limnology and Oceanography 38(8): 1627–1632.

    Article  Google Scholar 

  • Corcoll, N., B. Bonet, M. Leira & H. Guasch, 2011. Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673: 119–136.

    Article  CAS  Google Scholar 

  • Corcoll, N., Ricart, M., Franz, S., Sans-Piché, F., Schmitt-Jansen, M., & Guasch, H., 2012. The use of photosynthetic fluorescence parameters from autotrophic biofilms for monitoring the effect of chemicals in river ecosystems. In Emerging and priority pollutants in rivers (pp. 85–115). Springer, Berlin, Heidelberg.

  • Domínguez, E., Giorgi, A., Miserendino, M.A., Marchese, M., & Gómez N., 2020. Problemáticas de cuencas en Argentina. Recomendaciones para su gestión. Pp: 259–272. En Domínguez, E., Giorgi, A., & N. Gómez (eds). La bioindicacion en el monitoreo y evaluación de los sistemas fluviales de la Argentina.

  • Elosegi, A., Butturini, A. & Armengol J., 2009. El caudal circulante. Pp 51–69 en: A. Elosegui & S. Sabater (Eds), Conceptos y técnicas en ecología fluvial. Fundación BBVA, España.

  • Epstein, D., J. Kelso & M. Baker, 2016. Beyond the urban stream syndrome: organic matter budget for diagnostics and restoration of an impaired urban river. Urban Ecosystem 19: 1623–1643.

    Article  Google Scholar 

  • Feckler, A., J. Rakovic, M. Kahlert, R. Tröger & M. Bundschuh, 2018. Blinded by the light: Increased chlorophyll fluorescence of herbicide-exposed periphyton masks unfavorable structural responses during exposure and recovery. Aquatic Toxicology 203: 187–193.

    Article  CAS  Google Scholar 

  • Feijoó, C. & R. J. Lombardo, 2007. Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research 41: 1399–1410.

    Article  Google Scholar 

  • Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Article  Google Scholar 

  • Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell & W. B. Bowden, 2002. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43(1): 55–66.

    Article  CAS  Google Scholar 

  • Fox, J.& Weisberg, S.,2019. An {R} Companion to Applied Regression, Third EditionThousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

  • Frau, D., J. Medrano, C. Calvi & A. Giorgi, 2019. Water quality assessment of a neotropical pampean lowland stream using a phytoplankton functional trait approach. Environmental Monitoring and Assessment 191(11): 681.

    Article  CAS  Google Scholar 

  • Freese, H. M., U. Karsten & R. Schumann, 2006. Bacterial abundance, activity, and viability in the eutrophic river Warnow, Northeast Germany. Microbial Ecology 51(1): 117–127.

    Article  CAS  Google Scholar 

  • Gabellone, N. A., M. C. Claps, L. C. Solari & N. C. Neschuk, 2005. Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry 75(3): 455–477.

    Article  CAS  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Article  Google Scholar 

  • Giorgi, A., C. Feijoó & H. G. Tell, 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14(7): 1699–1718.

    Article  Google Scholar 

  • Hill, W., 1996. Effects of light. Pp. En: Stevenson, R.J.; Bothwell, M. L. & Lowe, R.L. (Eds) Algal ecology: Freshwater benthic ecosystems. Academic Press, USA.

  • Hill, W. R. & S. M. Dimick, 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilisation efficiency. Freshwater Biology 47(7): 1245–1256.

    Article  CAS  Google Scholar 

  • INDEC, 2010. Censo Nacional de Población, Hogares y Viviendas 2010. Instituto Nacional de Estadística y Censos. www.indec.gov.ar.

  • Jürgens, K. & C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81(1–4): 413–434.

    Article  Google Scholar 

  • Kassambara, A., & Mundt, F., 2020. Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. http://www.sthda.com/english/rpkgs/factoextra

  • Lavado, R., O. Duymovich, J. Gimenez & L. Alvarez, 1982. Pérdidas de sustancias húmicas de suelos nátricos a través del río Samborombón. Revista Museo de La Plata IX, Geología 76: 97–103.

    Google Scholar 

  • Licursi, M. & N. Gomez, 2009. Effects of dredging on benthic diatom assemblages in a lowland stream. Journal of Environmental Management 90(2): 973–982.

    Article  CAS  Google Scholar 

  • Massana, R., J. M. Gasol, P. K. Bjørnsen, N. Blackburn, Å. Hagström, S. Hietanen & C. Pedrós-Alió, 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61: 397–407.

    Google Scholar 

  • Masseret, E., C. Amblard & G. Bourdier, 1998. Changes in the structure and metabolic activities of periphytic communities in a stream receiving treated sewage from a waste stabilization pond. Water Research 32(8): 2299–2314.

    Article  CAS  Google Scholar 

  • Matteucci, S. D., 2012. Ecorregion Pampa. Pp. 391–445 en J. Morello, S. Matteucci, & A. Rodriguez (eds), Ecorregiones y Complejos Ecosistémicos Argentinos. Orientación Grafica Editora, Buenos Aires.

  • Maxwell, K. & G. N. Johnson, 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51(345): 659–668.

    Article  CAS  Google Scholar 

  • Monti, D., C. Hubas, X. Lourenço, et al., 2020. Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories. Sci Rep 10: 17309. https://doi.org/10.1038/s41598-020-73948-7.

    Article  CAS  Google Scholar 

  • Montuelle, B., U. Dorigo, A. Bérard, B. Volat, A. Bouchez, A. Tlili & S. Pesce, 2010. The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 657(1): 123–141.

    Article  CAS  Google Scholar 

  • Morello, J., G. Buzai, C. Baxendale, A. Rodriguez, S. Matteucci, R. Godagnone & R. Casas, 2000. Urbanización y consumo de tierra fértil. Ciencia Hoy 10: 50–61.

    Google Scholar 

  • Moreno, S. G., H. P. Vela & M. O. Alvarez, 2008. La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista De Educación Bioquímica 27(4): 119–129.

    Google Scholar 

  • Niemelä, J., S. Saarela, T. Soderman, L. Kopperoinen, V. Yli-pelkonen, S. Vaare & D. Kotze, 2010. Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodiversity Conservation 19: 3225–3243.

    Article  Google Scholar 

  • O’Brien, P. J., & Wehr, J. D., 2009. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. In Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services (pp. 89–105). Springer, Dordrecht.

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P. R., O’hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Maintainer, H. W., 2020. Package “vegan” Community Ecology Package Version 2.5–7.

  • Pesce, S., S. Lissalde, D. Lavieille, C. Margoum, N. Mazzella, V. Roubeix & B. Montuelle, 2010. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach. Aquatic Toxicology 99(4): 492–499.

    Article  CAS  Google Scholar 

  • Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3(7): 537–546.

    Article  CAS  Google Scholar 

  • Piccinini, M. A., 2016. Capacidad del arroyo Salgado, Partido de Lobos, para depurar efluentes cloacales, Universidad Nacional de Luján, Tesis de Post-grado:

    Google Scholar 

  • Pizarro, H. & M. Alemanni, 2005. Variables físico-químicas del agua y su influencia en la biomasa del perifiton en un tramo inferior del Río Luján (Provincia de Buenos Aires). Ecología Austral 15(1): 73–88.

    Google Scholar 

  • Ponsatí, L., N. Corcoll, M. Petrović, Y. Picó, A. Ginebreda, E. Tornés & S. Sabater, 2016. Multiple-stressor effects on river biofilms under different hydrological conditions. Freshwater Biology 61(12): 2102–2115.

    Article  Google Scholar 

  • Porter, K. G. & S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Posch, T., J. Franzoi, M. Prader & M. M. Salcher, 2009. New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology 54(2): 113–126.

    Article  Google Scholar 

  • Pozo, J. & Elosegui, A., 2009. El marco físico: la cuenca. Pp. 39–49 en: Elosegui, A. & S. Sabater (eds). Conceptos y técnicas en ecología fluvial. Fundación BBVA, España.

  • Proia, L., Cassió, F., Pascoal, C., Tlili, A., & Romaní, A. M., 2012. The use of attached microbial communities to assess ecological risks of pollutants in river ecosystems: the role of heterotrophs. In Emerging and Priority Pollutants in Rivers (pp. 55–83). Springer, Berlin, Heidelberg.

  • Pu, Y., W. Y. Ngan, Y. Yao & O. Habimana, 2019. Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health? Environmental Pollution 252: 440–449.

    Article  CAS  Google Scholar 

  • Pusch, M., D. Fiebig, I. Brettar, H. Eisenmann, B. K. Ellis, L. A. Kaplan & M. Traunspurger, 1998. The role of micro-organisms in the ecological connectivity of running waters. Freshwater Biology 40(3): 453–495.

    Article  Google Scholar 

  • Quiroga, M. V., G. Mataloni, B. M. Wanderley, A. M. Amado & F. Unrein, 2017. Bacterioplankton morphotypes structure and cytometric fingerprint rely on environmental conditions in a sub-Antarctic peatland. Hydrobiologia 787(1): 255–268.

    Article  CAS  Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Ricart, M., H. Guasch, M. Alberch, D. Barceló, C. Bonnineau, A. Geiszinger, M. la Farré, J. Ferrer, F. Ricciardi, A. Romani, S. Morine, L. Proia, L. Sala, D. Sureda & S. Sabater, 2010. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology 100(4): 346–353.

    Article  CAS  Google Scholar 

  • Rodríguez Castro, M. C., 2015. Capacidad de depuración de sustancias bioaprovechables en arroyos de llanura y su relación con el arsénico. Tesis Doctoral, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

  • Rodrígues Capítulo, A., N. Gómez, A. Giorgi, & C. Feijoó, 2010. Global changes in pampean lowland streams (Argentina): Implications for biodiversity and functioning. Hydrobiologia 657: 53–70.

  • Romaní, A. M. & S. Sabater, 1999. Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquatic Sciences-Research across Boundaries 61(2): 122–132.

    Article  Google Scholar 

  • Romaní, A. M., Artigas, J., Camacho, A., GraÇa, M. A. S. & C. Pascoal, 2009. La biota de los ríos: los microorganismos heterotróficos. Pp. 169–218 en: Elosegui A. & S. Sabater (eds). Conceptos y técnicas en ecología fluvial. Fundación BBVA, España.

  • Rysgaard, S., M. Kühl, R. N. Glud & J. W. Hansen, 2001. Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Marine Ecology Progress Series 223: 15–26.

    Article  Google Scholar 

  • Sabater, S. & Elosegui, A., 2009. Otros factores físicos de importancia para los seres vivos: luz, temperatura, corriente. Pp: 133–140 en: A. Elosegui & S. Sabater (Eds), Conceptos y técnicas en ecología fluvial. Fundación BBVA, España.

  • Sabater, S., H. Guasch, M. Ricart, A. Romaní & G. Vidal, 2007. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry 387: 1425–1434.

    Article  CAS  Google Scholar 

  • Sabater, S., J. Donato, A. Giorgi & Elosegui, A., 2009. El río como ecosistema. Pp. 23–37 en: Elosegui A. & S. Sabater (eds). Conceptos y técnicas en ecología fluvial. Fundación BBVA, España.

  • Schmitt-Jansen, M. & R. Altenburger, 2008. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquatic Toxicology 86: 49–58.

    Article  CAS  Google Scholar 

  • Schmitt-Jansen, M., U. Veit, G. Dudel & R. Altenburger, 2008. An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic and Applied Ecology 9: 337–345.

    Article  CAS  Google Scholar 

  • Schueler, T., 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs, Metropolitan Washington Council of Governments, Washington, DC:

    Google Scholar 

  • Schumann, R., T. Rieling, S. Görs, A. Hammer, U. Selig & U. Schiewer, 2003. Viability of bacteria from different aquatic habitats. I. Environmental conditions and productivity. Aquatic Microbial Ecology 32(2): 121–135.

    Article  Google Scholar 

  • Serra, A., N. Corcoll & H. Guasch, 2009. Copper accumulation and toxicity in fluvial periphyton: the influence of exposure history. Chemosphere 74: 633–641.

    Article  CAS  Google Scholar 

  • Sierra, M. V., N. Gómez, A. V. Marano & M. A. Di Siervi, 2013. Caracterización funcional y estructural del biofilm epipélico en relación al aumento de la urbanización en un arroyo de la Llanura Pampeana (Argentina). Ecología Austral 23(2): 108–118.

    Article  Google Scholar 

  • Sierra, M. & N. Gomez, 2007. Structural characteristics and oxygen consumption of the epipelic biofilm in three lowland streams exposed to different land uses. Water, Air, and Soil Pollution 186(1–4): 115–127.

    Article  CAS  Google Scholar 

  • Sommaruga, R. & R. Psenner, 1995. Permanent presence of grazing-resistant bacteria in a hypertrophic lake. Applied and Environmental Microbiology 61(9): 3457–3459.

    Article  CAS  Google Scholar 

  • Stevenson, R. J., & Bahls, L. L., 1999. Periphyton Protocols. In: Barbour, MT, J. Gerritsen, BD Snyder, and JB Stribling. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA/841-B-99-002. US EPA, Office of Water, Washington, DC.

  • Sweeney, B. W., T. L. Bott, J. K. Jackson, L. A. Kaplan, J. D. Newbold, L. J. Standley, W. C. Hession & R. J. Horwitz, 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences of the United States of America 101: 14132–14137.

    Article  CAS  Google Scholar 

  • Tagliaferro, M., A. Giorgi, A. Torremorell & R. Albariño, 2019. Urbanisation reduces litter breakdown rates and affects benthic invertebrate structure in Pampean streams. International Review of Hydrobiology 105(1–2): 33–43.

    Google Scholar 

  • Tambussi, E. A. & Graciano, C., 2010. La fluorescencia modulada de la clorofila. Método del pulso saturante. pp 117–127 en: Técnicas en medición en ecofisiología vegetal: conceptos y procedimientos (No. 581.1). Ediciones INTA. Buenos Aires, Argentina.

  • Taylor, S. L., S. C. Roberts, C. J. Walsh & B. E. Hatt, 2004. Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management. Freshwater Biology 49(6): 835–851.

    Article  CAS  Google Scholar 

  • Tien, C. J., W. H. Wu, T. L. Chuang & C. S. Chen, 2009. Development of river biofilms on artificial substrates and their potential for biomonitoring wáter quality. Chemosphere 76(9): 1288–1295.

    Article  CAS  Google Scholar 

  • Tlili, A., M. Maréchal, A. Bérard, B. Volat & B. Montuelle, 2011. Enhanced co-tolerance and co-sensitivity from long-term metal exposures of heterotrophic and autotrophic components of fluvial biofilms. Science of the Total Environment 409: 4335–4343.

    Article  CAS  Google Scholar 

  • Valdés, M. E., L. H. M. L. M. Santos, M. C. Rodríguez Castro, A. Giorgi, D. Barceló, S. Rodríguez-Mozaz & M. V. Amé, 2021. Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA). Environmental Pollution 269: 116–133. https://doi.org/10.1016/j.envpol.2020.116133.

    Article  CAS  Google Scholar 

  • Velázquez, G., 2000. El proceso de urbanización en la Argentina: de la primacía a la fragmentación socio-espacial. Tiempo y Espacio 9–10: 5–22.

    Google Scholar 

  • Velimirov, B., N. Milosevic, G. G. Kavka, A. H. Farnleitner & A. K. Kirschner, 2011. Development of the bacterial compartment along the Danube River: a continuum despite local influences. Microbial Ecology 61(4): 955–967.

    Article  Google Scholar 

  • Vilches, C. & A. Giorgi, 2010. Metabolism in a macrophyte-rich stream exposed to flooding. Hydrobiologia 654(1): 57–65.

    Article  Google Scholar 

  • Vilches, C., A. Giorgi, M. C. Rodriguez Castro & M. A. Casco, 2014. Periphyton responses to non-point pollution in eutrophic-humic environment: an experimental study. International Journal of Environmental Research 8: 523–530.

    CAS  Google Scholar 

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24(3): 706–723.

    Article  Google Scholar 

  • Young, R., C. Mathaei & C. Towsend, 2008. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society 27(3): 605–625.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, 5th ed. Prentice Hall, New York: 931.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Eduardo Zunino, Sebastian Kravetz, and Marina Tagliaferro for their help in the field. We thank Laura Rigacci for help in the lab. We thank our funders, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Universidad Nacional de Luján (UNLu); and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (AGENCIA)—Fondo para la Investigación Científica y Tecnológica (FONCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Torremorell.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be as a potential conflict interest.

Additional information

Handling Editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbarán, R., Vilches, C., Rodríguez Castro, M.C. et al. Structural parameters of biofilm and bacterioplankton are better indicators of urbanization than photosynthetic functional parameters in low-order streams. Hydrobiologia 850, 607–625 (2023). https://doi.org/10.1007/s10750-022-05110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05110-5

Keywords

Navigation