Skip to main content
Log in

Effects of temperature and a manipulative parasite on the swimming behaviour of Gammarus pulex in flowing water

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Numerous freshwater acanthocephalans are able to alter the behaviour of their intermediate hosts to increase their predation risk by final hosts, thereby enhancing trophic transmission between their two hosts. Because temperature is widely expected to impact freshwater host-parasite interactions, we investigated how it can affect movements of both uninfected and Pomphorhynchus laevis-infected Gammarus pulex in an artificial stream in 5 cm/s water flow. We found that P. laevis infection of G. pulex induced both higher frequency and higher amplitude of movements along the artificial stream. Moreover, at warmer temperature (21°C), uninfected and P. laevis-infected G. pulex moved more in the artificial stream than at 15°C. In this regard, warmer temperature could then impact gammarids distribution and increase P. laevis transmission rate toward their definitive host in freshwater ecosystems. Firstly, this study provides new insights into how the key temperature factor influences gammarids species movements in the stream. Secondly, elevated temperature did not influence the intensity of P. laevis manipulation in G. pulex intermediate host. This work highlights that warmer temperature might affect the distribution and the behaviour of infected or uninfected freshwater gammarids with no direct effect on acanthocephalan trophic transmission through manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.

    Article  Google Scholar 

  • Baldauf, S. A., T. Thünken, J. G. Frommen, T. C. Bakker, O. Heupel & H. Kullmann, 2007. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. International Journal for Parasitology 371: 61–65.

    Article  PubMed  Google Scholar 

  • Barber, I., B. W. Berkhout & Z. Ismail, 2016. Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Integrative and Comparative Biology 564: 561–572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benesh, D. P., T. Hasu, O. Seppälä & E. T. Valtonen, 2009. Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? Parasitology 1362: 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Bournaud, M. & M. Thibault, 1973. La dérive des organismes dans les eaux courantes. Hydrobiologia 41: 11–49.

    Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift – a review. Hydrobiologia 1661: 77–93.

    Article  Google Scholar 

  • Brooks, D. R. & E. P. Hoberg, 2007. How will global climate change affect parasite–host assemblages? Trends in Parasitology 2312: 571–574.

    Article  PubMed  Google Scholar 

  • Buchholz, R., J. D. Banusiewicz, S. Burgess, S. Crocker-Buta, L. Eveland & L. Fuller, 2019. Behavioural research priorities for the study of animal response to climate change. Animal Behaviour 150: 127–137.

    Article  Google Scholar 

  • Cézilly, F. & M.-J. Perrot-Minnot, 2005. Studying adaptive changes in the behaviour of infected hosts: a long and winding road. Behavioural Processes 683: 223–228.

    Article  PubMed  Google Scholar 

  • Cézilly, F., A. Grégoire & A. Bertin, 2000. Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 1206: 625–630.

    Article  PubMed  Google Scholar 

  • Cézilly, F., A. Favrat & M.-J. Perrot-Minnot, 2013. Multidimensionality in parasite-induced phenotypic alterations: ultimate versus proximate aspects. Journal of Experimental Biology 2161: 27–35.

    Article  PubMed  Google Scholar 

  • Cid, N., N. Bonada, S. M. Carlson, T. E. Grantham, A. Gasith & V. H. Resh, 2017. High variability is a defining component of Mediterranean-climate rivers and their biota. Water 9(1): 52.

    Article  Google Scholar 

  • Cizauskas, C. A., C. J. Carlson, K. R. Burgio, C. F. Clements, E. R. Dougherty, N. C. Harris & A. J. Phillips, 2017. Parasite vulnerability to climate change: an evidence-based functional trait approach. Royal Society Open Science 41: 160535.

    Article  Google Scholar 

  • Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2004. Long-term changes within the invertebrate and fish communities of the Upper Rhone River: effects of climatic factors. Global Change Biology 101: 124–140.

    Article  Google Scholar 

  • Dezfuli, B. S., E. Rossetti, C. M. Bellettato & B. J. Maynard, 1999. Pomphorhynchus laevis in its intermediate host Echinogammarus stammeri in the River Brenta, Italy. Journal of Helminthology 732: 95–102.

    Article  Google Scholar 

  • Diffenbaugh, N. S., J. S. Pal, F. Giorgi & X. Gao, 2007. Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters 34: L11706.

    Article  Google Scholar 

  • Dobson, A., K. D. Lafferty, A. M. Kuris, R. F. Hechinger & W. Jetz, 2008. Homage to Linnaeus: How many parasites? How many hosts? Proceedings of the National Academy of Sciences of the United States of America 105: 11482–11489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudiňák, V. 2001. Comparative analysis of Slovak and Czech populations of Pomphorhynchus laevis Acanthocephala using morphological and isoenzyme analyses. Acta Zoologica Universitatis Comenianae 44: 41–50.

    Google Scholar 

  • Dunne, J. A., K. D. Lafferty, A. P. Dobson, R. F. Hechinger, A. M. Kuris, N. D. Martinez & C. D. Zander, 2013. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biology 11(6): e1001579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott, J. M., 1973. The food of brown and rainbow trout Salmo trutta and S. gairdneri in relation to the abundance of drifting invertebrates in a mountain stream. Oecologia 124: 329–347.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, J. M., 2002. The drift distances and time spent in the drift by freshwater shrimps, Gammarus pulex, in a small stony stream, and their implications for the interpretation of downstream dispersal. Freshwater Biology 478: 1403–1417.

    Article  Google Scholar 

  • Elliott, J. M., 2005. Day–night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony stream. Freshwater Biology 504: 552–566.

    Article  Google Scholar 

  • Foucreau, N., C. Piscart, S. Puijalon & F. Hervant, 2013. Effect of climate-related change in vegetation on leaf litter consumption and energy storage by Gammarus pulex from continental or Mediterranean populations. PLoS ONE 810: e77242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foucreau, N., D. Cottin, C. Piscart & F. Hervant, 2014. Physiological and metabolic responses to rising temperature in Gammarus pulex Crustacea populations living under continental or Mediterranean climates. Comparative Biochemistry and Physiology Part A Molecular and Integrative Physiology 168: 69–75.

    Article  CAS  Google Scholar 

  • Foucreau, N., C. Piscart, S. Puijalon & F. Hervant, 2016. Effects of rising temperature on a functional process: consumption and digestion of leaf litter by a freshwater shredder. Fundamental and Applied Limnology 1874: 295–306.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2018. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software 879: 1–27. https://doi.org/10.18637/jss.v087.i09.

  • Goedmakers, A. & S. Pinkster, 1981. Population dynamics of three gammarid species Crustacea, Amphipoda in a French chalk stream. Part III. Migration. Bijdragen tot de Dierkunde 512: 145–180.

    Google Scholar 

  • Grabner, D. S., 2017. Hidden diversity: parasites of stream arthropods. Freshwater Biology 621: 52–64.

    Article  Google Scholar 

  • Hine, P. M. & C. R. Kennedy, 1974. Observations on the distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis Müller. Journal of Fish Biology 64: 521–535.

    Article  Google Scholar 

  • Horwitz, P. & B. A. Wilcox, 2005. Parasites, ecosystems and sustainability: an ecological and complex systems perspective. International Journal for Parasitology 357: 725–732.

    Article  PubMed  Google Scholar 

  • Hudson, P. J., A. P. Dobson & K. D. Lafferty, 2006. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology and Evolution 217: 381–385.

    Article  PubMed  Google Scholar 

  • Hume, K. D., R. W. Elwood, J. T. Dick & J. Morrison, 2005. Sexual dimorphism in amphipods: the role of male posterior gnathopods revealed in Gammarus pulex. Behavioral Ecology and Sociobiology 583: 264–269.

    Article  Google Scholar 

  • Kaldonski, N., M.-J. Perrot-Minnot & F. Cézilly, 2007. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Animal Behaviour 74: 1311–1317.

    Article  Google Scholar 

  • Kennedy, C. R., 2006. Ecology of the Acanthocephala. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kobak, J., Ł. Jermacz, J. Marcińczyk, E. Bartoszyńska, D. Rutkowska, & K. Pawłowska, 2017. Abiotic factors affecting habitat selection by two invasive gammarids Dikerogammarus villosus and Pontogammarus robustoides. Hydrobiologia 797(1): 247–263.

    Article  CAS  Google Scholar 

  • Kuris, A. M., R. F. Hechinger, J. C. Shaw, K. L. Whitney, L. Aguirre-Macedo, C. A. Boch & K. D. Lafferty, 2008. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454(7203): 515–518.

    Article  CAS  PubMed  Google Scholar 

  • Labaude, S., T. Rigaud & F. Cézilly, 2015. Host manipulation in the face of environmental changes: ecological consequences. International Journal for Parasitology: Parasites and Wildlife 43: 442–451.

    Google Scholar 

  • Labaude, S., F. Cézilly & T. Rigaud, 2017. Temperature-related intraspecific variability in the behavioral manipulation of acanthocephalan parasites on their gammarid hosts. Biological Bulletin 2322: 82–90.

    Article  PubMed  Google Scholar 

  • Labaude, S., F. Cézilly, L. De Marco & T. Rigaud, 2020. Increased temperature has no consequence for behavioral manipulation despite effects on both partners in the interaction between a crustacean host and a manipulative parasite. Scientific Reports 101: 1–13.

    Article  CAS  Google Scholar 

  • Lagrue, C., N. Kaldonski, M.-J. Perrot-Minnot, S. Motreuil & L. Bollache, 2007. Modification of hosts' behavior by a parasite: field evidence for adaptive manipulation. Ecology 8811: 2839–2847.

    Article  PubMed  Google Scholar 

  • Maasri, A., B. Dumont, C. Claret, G. Archambaud-Suard, E. Gandouin & E. Franquet, 2008. Tributaries under Mediterranean climate: their role in macrobenthos diversity maintenance. Comptes Rendus Biologies 3317: 547–558.

    Article  PubMed  Google Scholar 

  • MacNeil, C., J. T. A. Dick & R. W. Elwood, 1999. The dynamics of predation on Gammarus spp. Crustacea: Amphipoda. Biological Reviews 744: 375–395.

    Article  Google Scholar 

  • Marcogliese, D. J., 2001. Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology-Revue Canadienne De Zoologie 798: 1331–1352.

    Article  Google Scholar 

  • Marcogliese, D. J., 2005. Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology 357: 705–716.

    Article  PubMed  Google Scholar 

  • Marcogliese, D. J., 2008. The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue Scientifique et Technique-Office International des Epizooties 272: 467–484.

    Article  CAS  Google Scholar 

  • Maynard, B. J., T. A. Wellnitz, N. Zanini, W. G. Wright & B. S. Dezfuli, 1998. Parasite-altered behavior in a crustacean intermediate host: field and laboratory studies. Journal of Parasitology 846: 1102–1106.

    Article  CAS  PubMed  Google Scholar 

  • Mazerolle, M. J., 2019. Model selection and multimodel inference based on (Q) AIC (c). R package version 2.2-2.

  • McCahon, C. P., S. J. Maund & M. J. Poulton, 1991. The effect of the Acanthocephalan parasite Pomphorhynchus laevis on the drift of its intermediate host Gammarus pulex. Freshwater Biology 253: 507–513.

    Article  Google Scholar 

  • Moenickes, S., A. K. Schneider, L. Muhle, L. Rohe, O. Richter & F. Suhling, 2011. From population-level effects to individual response: modelling temperature dependence in Gammarus pulex. Journal of Experimental Biology 214(21): 3678–3687.

    Article  PubMed  Google Scholar 

  • Morley, N. J. & J. W. Lewis, 2014. Temperature stress and parasitism of endothermic hosts under climate change. Trends in Parasitology 305: 221–227.

    Article  PubMed  Google Scholar 

  • Mouritsen, K. N. & R. Poulin, 2005. Parasites boosts biodiversity and changes animal community structure by trait-mediated indirect effects. Oikos 1082: 344–350.

    Article  Google Scholar 

  • Overstreet, R. M., 1993. Parasitic diseases of fishes and their relationship with toxicants and other environmental factors. Pathobiology of Marine and Estuarine Organisms 5: 111–155.

    Google Scholar 

  • Perrot-Minnot, M.-J., 2004. Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis Acanthocephala. International Journal for Parasitology 341: 45–54.

    Article  PubMed  Google Scholar 

  • Perrot-Minnot, M.-J., M. Maddaleno & F. Cézilly, 2016. Parasite-induced inversion of geotaxis in a freshwater amphipod: a role for anaerobic metabolism? Functional Ecology 305: 780–788.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. Debroy & D. Sarkar, 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package version 30.

  • Piscart, C., A. Manach, G. H. Copp & P. Marmonier, 2007. Distribution and microhabitats of native and non‐native gammarids Amphipoda, Crustacea in Brittany, with particular reference to the endangered endemic sub‐species Gammarus duebeni celticus. Journal of Biogeography 343: 524–533.

    Article  Google Scholar 

  • Rachalewski, M., J. Kobak, E. Szczerkowska-Majchrzak & K. Bącela-Spychalska, 2018. Some like it hot: factors impacting thermal preferences of two Ponto-Caspian amphipods Dikerogammarus villosus (Sovinsky, 1894) and Dikerogammarus haemobaphes (Eichwald, 1841). PeerJ 6: e4871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sainte-Marie, B., 1991. A review of the reproductive bionomics of aquatic Gammaridean amphipods variation of life-history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223: 189–227.

    Article  Google Scholar 

  • Tokeson, J. P. E. & J. C. Holmes, 1982. The effects of temperature and oxygen on the development of Polymorphus marilis Acanthocephala in Gammarus lacustris Amphipoda. Journal of Parasitology 681: 112–119.

    Article  Google Scholar 

  • Vidal-Martinez, V. M., D. Pech, B. Sures, S. T. Purucker & R. Poulin, 2010. Can parasites really reveal environmental impact? Trends in Parasitology 261: 44–51.

    Article  PubMed  Google Scholar 

  • Waters, T. F., 1984. Diurnal periodicity in the drift of stream invertebrates. Agriculture Biology and Environmental Sciences 432: 316–320.

    Google Scholar 

  • Wellnitz, T., L. Giari, B. Maynard & B. S. Dezfuli, 2003. A parasite spatially structures its host population. Oikos 1002: 263–268.

    Article  Google Scholar 

  • Wickham, H., 2016 ggplot2: Elegant Graphics for Data Analysis. Springer, New York.

    Book  Google Scholar 

  • Zganec, K., S. Gottsein & S. Hudina, 2013. Spatio-temporal variation of drift and upstream movements of the Amphipod Gammarus fossarum in a small unaltered stream. Polish Journal of Ecology 614: 769–784.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

We thank Benjamin Oursel and Anthony Penalva for their help with gammarid sampling. We thank Eric Meineri for his help with statistics. We are grateful to Coralie Jacquemin and Maxine Thorel for their comments and suggestions, which helped improve an earlier version of the manuscript. Finally, we thank Marjorie Sweetko for improving the English wording of this manuscript.

Funding

This work was funded by the Labex DRIIHM, French Program “Investissements d’Avenir” (ANR-11-LABX-0010) managed by the ANR within the Observatoire Hommes-Milieux Bassin Minier de Provence (OHM BMP) and the ECCOREV Research Federation (FR 3098). Hadrien Fanton received a PhD Fellowship from the Ministère de la Recherche et de l’Enseignement Supérieur, the Aix-Marseille Université, École Doctorale Sciences de l'environnement (ED 251), and this paper is part of his Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadrien Fanton.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanton, H., Franquet, E., Logez, M. et al. Effects of temperature and a manipulative parasite on the swimming behaviour of Gammarus pulex in flowing water. Hydrobiologia 848, 4467–4476 (2021). https://doi.org/10.1007/s10750-021-04655-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04655-1

Keywords

Navigation